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Once you leave
You should be aware
v What are waves and how we describe wave

v" What is wave energy & wave resource assessments
v Wave energy converters & how to estimate power
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Introducing waves as a resource
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Definition
In general an ocean/sea wave is:

"the mean of vertical motion of the ocean surface"

Vertical motion can be either due to wind, gravity, tectonic plates, etc.. There are numerous "wave"
version(s), however we focus at wind generated waves.
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Wind generated waves

Real ocean waves are more complex and most are irreqular waves
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Komen et al 1994

wind
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Pressure p

Water Surfacen

coastline

— Wind pressure is applied to sea surface

Wind generated waves often occur at small regions
and are usually of lower height.

However.....

deep water

Holthuijsen 2010



Swells

Wind generated waves travelling long distances, "transform” into swells
They tend to maintain a constant direction with some directional spreading

energy spreads out

' along wave fronts \

N. America

Africa

« High frequency (low periods) "merge" to form
lower frequency
« Lower frequency waves, travel faster
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Metocean characteristics

A wave is not every surface elevation

f an elevation is not a wave and
i ( ) 3 does not provide a wave height

Ik
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Height & Period(s)

n(t) 3mg
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Non Linear Waves
Local characteristics affect waves

deep water intermediate depth very shallow water

» wave direction » wave direction » waye direction

L

v No interaction with the bottom L =1.56 -T2
v Water particles moves in circle C=156 T
v' Diameter of orbital motion decreases with depth C =156 -VL

v Wave speed (celerity) proportional to wavelength

Holthuijsen 2010
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Non Linear Waves

deep water intermediate depth very shallow water

‘ wave direction

L

» wave direction

» wave direction

bottom

v" Orbital motion changes due to bottom interactions
C=.gh v" Transforming wave column into ellipse

v" Surge motion is more common.

v" Celerity proportional to depth of water.

Holthuijsen 2010
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Depth Effects

Bottom friction Depth breaking

» Effects of seabed on water column » At shallow depth breaking is more
»Negative effects often
»Depends on seabed particles roughness » Cannot be predicted always
»>Site specific » Preferred to obtain by a ration of
>Material specific wave height-to-depth
Himax
i 0.75
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Near & Shallow waters

Shoaling & Reflection Refraction & Diffraction

v Phase speed = Group velocity v~ Waves slowly change direction as
v" Waves disperse less the}/ move ashore
v Waves will reflect on coastlines ¥ As in the case of other wave types

(i.e. Snel's Law similarities)

v" Long-crested waves prefer to
propagate to lower energy region

v Waves will propagate to sheltered
lower resource region

v Pending on morphology (i.e. sloped, vertical etc.)
v" Returning waves cause higher non-linear losses

Dominant physical processes in nearshore environments and can affect the wave characteristics
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Waves in reality
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Real waves

Real Seas encompass waves that have multiple characteristics (irreqular, swells, wind-waves etc.).

N wd 7,

space or lime —p
=1+, =serees of growups

They constitute a variety of periods/frequencies and elevations.
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Wave Spectra

Basic concept : Wave spectrum is surface elevation as a function of time, always
considering numerous harmonic waves

v"One directional spectrum (1D)
v"Two directional spectrum (2D)

N

n(t) = zai -cos(2m - f; - t + ;)

=1

This is the random-phase amplitude model !!
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1D Spectrum

Seas do not have pre-defined OR discrete range of frequencies, nor are they stationary in time.

T=3.76s, H=0.91m
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The 1D spectrum describes large number of waves in the time/frequency domain
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Holthuijsen 2010
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wind-sea

wind-sea

2D spectrum

two-dimensional spectrum

F.0) = A}OME e

Eenergy(fz pg- E(f

-------—-‘-------

Units in
m? /Hz/rad
S i Or
one-dimensional spectrum
m? /Hz/degrees

»
>
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Description of spectral for real waves

Spectra (Empirical)

v Pierson-Moskowitz (PM)

v Wind generated waves are random v Joint North Sea Wave Project
v" Superposition of larger number of waves (JONSWAP)
v Waves is described according to amplitudes and v" Other empirical formulations

energy variance
v Some variations of spectra exist

Ocean spectra of real waves provide realistic descriptions.

Major consideration is that wind acts as the generating and propagating force
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Spectra
Pierson-Moskowitz (PM) JONSWAP

0s
07 s
067 osd
057 o
047 : '
037 o3
0z N
017
o o
0.1 14 15 N
f\* '
E(f,ﬁ):apm-g2-(27r)4f5-exp[—1.25-(f) ] _ _l_ fn 28
m 2 O peak,param = ol
@ Jonswap spectrum
£ _;_zg%g & H.o—0023 U2 with: grs-
M= Upg s m0—"4- - F195 z
Ta f < fm g’ T Pierson-Moskowitz spectrum
o = g
peak.param i s fm gn,s-
1]

0 0.5 1 15 2 25
Dimensionless frequency (fp)

]
TU Delft Hasselmann et al 1973



Tides & currents

v Local environmental characteristics also include, local wave current and tidal resources.

v" Pending on region and resolution at which is observed, tidal & current effects can alter
direction and reduce wave energy propagated.

v" These consideration will depend on the level of study, and application

v" Different approach to higher non-linear physical solution is needed

3
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Wave Monitoring
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Applications

Maritime
Marine structures
Offshore platforms

M&O

Offshore energies

Why data acquisition & monitoring ....

v Hindcasts

v" Forecast studies
(short/long &
term)

v Climate Change

v In-Situ
v" Ship/human observations
v' Satellites

v Numerical Wave Models
(NWM)
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In-Situ

R Limitations for ADCP
S ISR i ions for ADCP.

v" Limited vertical resolution

Limitations for wave buoys

v" Area coverage v" Limited measurement range
v" Time recording duration v Susceptibility to noise

v Monitored quantities v Influence of surface

v Dependence on moorings roughness

v" Breakdown events (non-recording) v Influence of current

v" Filtering processes required

MOBILE VEHICLES FIXED MOORING
Vehicle‘ ttom Vel - Current Profile Spatial Cross Section c ile Ti . ave Directional Spectrum
e nt : >
Vi b
u g
L . owieE Horizontal i\
L \ in Profiling |
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Ship/Human Observation

Requires experienced personnel
Short duration-expedition
Limited applicability & range
Subjectivity & Human error
Incomplete information

Lack of precision

Some examples can be

Shore based observation
Boat-based observations
Aerial observations
Video observations
Human observations

24



Satellites/Altimeter/Radar Altimetry

Temporal recordings s
Coverage -
Applicability nearshore & coastal waters /

Filtering processes are necessary sl af ene R o
Not immediately available _searioon. i““”““
Affected by weather phenomena represencE A0 '
Affected by other human tech (radar, etc) Cavaleri et al 2019

Not suitable for measuring in shallow or near e
shorelines

Qﬁ
/>s SATELLITE

NN N X X X X X
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Numerical Wave Models

Continuous improvements on models have enhanced our knowledge on waves, past,
present and future.

v"Wave resource

v'Boundary interaction

v"Ocean feedback to atmosphere
v Temperature

v Tsunami, extreme storms

Opportunities
Data assimilation
Multi-model communication
HPC multi-threading (computing)
Quality of Inputs

Lavidas et al 2018

]
TUDelft 26



Inputs quality

Physical calibration

Need benchmarking
Computational resources
Experienced User

High level of tuning

NN N X X X

3
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Numerical Wave Models
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Waves as Energy
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Why is the wave resource important?

Short answer: It helps us with day-to-day operations

Long answer: It provides necessary information that can be expanded to many different
sectors

v"Naval, maritime (Commercial & Military)
v"Weather forecasting
v'Structures/platforms

v'Ships

v'Fisheries

v'Climate Analysis

v'Climate Change

v'Energies
V...

3
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Some applications vital for wave resource

X/

s WEC applications ¢+ Design of offshore structures ¢+ Optimal ship routes and safe navigation

https://www.offshore-energy.biz/corpower-launches- https://www.nesfircroft.com/blog/2021/06/the-6-biggest- https://www.researchgate.net/figure/Major-maritime-shipping-
its-first-commercial-scale-wave-energy-converter offshore-structures-in-the-world?source=google.com routes-and-strategic-passages figl 315398501
« Ports and harbours < Maritime activities % SSB Correction

e

https://zeymarine.com/worlds-biggest-ports/

= = e

https://en.wikipedia.org/wiki/Commercial fishing https://www.whoi.edu/satellite-altimetry-mission-promises-huge-

T U D e I f't advances-for-physical-oceanography-and-hydrology/



https://www.researchgate.net/figure/Major-maritime-shipping-routes-and-strategic-passages_fig1_315398501
https://www.researchgate.net/figure/Major-maritime-shipping-routes-and-strategic-passages_fig1_315398501
https://www.nesfircroft.com/blog/2021/06/the-6-biggest-offshore-structures-in-the-world?source=google.com
https://www.nesfircroft.com/blog/2021/06/the-6-biggest-offshore-structures-in-the-world?source=google.com
https://www.offshore-energy.biz/corpower-launches-its-first-commercial-scale-wave-energy-converter
https://www.offshore-energy.biz/corpower-launches-its-first-commercial-scale-wave-energy-converter
https://zeymarine.com/worlds-biggest-ports/
https://en.wikipedia.org/wiki/Commercial_fishing
https://www.whoi.edu/satellite-altimetry-mission-promises-huge-advances-for-physical-oceanography-and-hydrology/
https://www.whoi.edu/satellite-altimetry-mission-promises-huge-advances-for-physical-oceanography-and-hydrology/

Distribution(s)

Pending on the description desired, waves can be distinguished in two ways:
. Weather
Il. Climate

These two will ultimately use different approaches & outcomes: Short-term &
Long-term Statistical analysis.

“*For shorter periods changes are easily observed i.e. foreshores and shallow water waves.
“*Local Characteristics have serious effects

3
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Short-term vs Long-term

v"15-30 min or for a storm 6-12 hr
v'Easily "accessible"

v'Suitable short time intervals & storm
v"Assume Gaussian and stationary

v'Used analyse structures, fatigues and
instantaneous characteristics

v'Determine physical wave characteristics

3
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v'"Non-stationary

v'Design condition for offshore & coastal
structures

v'For energy applications

v'Climate analysis

v'Difficult to obtain data

v"No theoretical distribution model
v'Requires preparation of dataset

Extreme Value Analysis (EVA) is useful in
many sector and very important for
estimating survivability, applicable to the
enerqgy sector

32



Extreme Value Analysis (EVA)
Usually 20, 50, 100 years of return periods are investigated.

v'Suitable method/empirical distributions need proper selection

v"Access/Development and preparation of datasets

v'"Goodness-of-Fit" assessment

v’ Estimation and determination of probabilities of exceedance that may occur in the future

v Awareness of extreme events and expected return values is vital to the design in offshore
industries

Recommended duration > 10 years, ideally not less that 20% of the
desired return period

3
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Renewable Energy

Asides from the "traditional" application and utilization of ocean & Sea resources by human societies,
waves are an inexhaustible source of energy.

0 40°E 80 E 120'E 160" E 200" E 240" E 280 E 320'E 360 E
90" N

GOCN

30°N

30°S

60°S

ERAS

90" s

20 30 40 50 60 70 80 90 100 10 120
KW-m Lavidas et al 2021

Wave power is expressed as the energy flux per one unit of crest width (W/m)
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Wave power (regular waves)

E,, .ve 1s the summation of kinetic and potential energy per unit surface area of a wave

1
Ewave = Ekinetic T+ Epot = § P9 HT%’LO ) Cg

dyuse = T-\/%-tanh-(k ‘h)

2kh c
sinh(2kh)

1
Cg=§' 1+

_ p-g® Hpg T
Pwave_ 32.7_[
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Wave power (irregular waves)

2kh c
sinh(2kh)

1
Evwave =§'p'g'H1%10'Cg(f:h)

_|_

1

m—q

In this case (f) is represented by the Energy period: T, =

mn

manoznfoooa”-E(f,H)-df-dH

P gz ) H’I%’LO - T
Frave = s In W/m or kW/m
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Wave power (irregular waves) | Spectral formulation

Hm0=4

HE(f,H)-df-dH

V27T o
Pwave=p'g'J f Cg°E(f,9)°df°d9
0 0

([
P)(:p'g'Jch)('E(f;e)'df'dH
([
Py=p-g-JJng-E(f,G)-df-dH
Brave =\/Px2_|'Py2 In W/m or kW/m
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Resource assessment

A resource assessment that is applicable over wide spatio-temporal conditions can be done (predominately in two
ways):

»Satellite Data
»Numerical Wave Modelling

Preparation is Key!!

Depending on data produced or sampled filtering, clearing, modelling and set-up is vital.
Usually to ensure proper assessment a numerical multi-model is the most suitable method.

v'Wind Components

v'Bathymetry information

v"Constructing the model code

v'Boundary conditions

v'Initial conditions

v'Determine time duration

v'Determine parameters

v'"Nesting \& Multi-model combination

v"and many more intrinsic and project specific details.

3
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Action Balance Equation

The Action Balance Equation is applicable both on Cartesian & Spherical, with a full spectral
non-stationary solution.

+ COS r:,u‘li

ON-(o; X, 6;1) . OCg - N-(o;A;6; 1)
Ot O\
OCr o N(o; A; 0; 1) . OCrg-N-(0o; X 0;1)
o)) o
OCfo-N-(a; X 0:t) S-(0;60;\¢:t)

e T

_l_

radian frequency=(c), time = t solution, latitude= A, longitude =
p, frequency= o, direction= 6, and group velocities = Cg (for
latitude & longitude)
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Sink terms

Wave theory and its translation into a working numerical model is presented in terms of
the action density balance equation, with an overview of the physics and their
importance in the resource analysis (per regional applicability)

Smr = an + SnM + Sdsﬁw *SHB T Sds.b + Sd‘S.br T 5:::':::'

Deep water Nearshore/Shallow s A
Sip=Wind Input Spia=Triad Interactions
Spia—Quadruplet Sds,p=Bottom Friction
Interactions Sds,br=Depth Breaking

S54s. w=Whitecapping  Sxx=user defined
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Model distinction

Oceanic waters Coastal water
Process Shelf Seas Nearshore Shallow
Wind generation EEE L] L] u
Quadruplets EEN EEN u u
Whitecapping EEN EEN u u
Bottom Friction O L] EEE u
Depth breaking O u EEN ]
Currents O n ([ EEN
Triads O u [ ] u
Reflection O ] EEE EEE
Refraction O N EEN EEN

m m m=Dominant,mm=5Significant,@m=Minor,0 = Negligible

Holthuijsen 2010
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WEC History
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19th & early 20t Century

34g.
12 juillt 1799,
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~

A
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Revival & energy “thirst”
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1970s “wave revolt”

Wave power
S. H. Salter

Bionics Research Laboratory, University of Edinburgh, Edinburgh EH1 2QL, UK

Solar energy is one form of income on which we can afford ~ THE amount of po

to live, Here is another proposal: the use of power from

the waves at sea.

calculating the chan;
above sea level falls
If the sea water has .
is W, then the mas

©1974 Nature Publishing Group
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Ambitious goals

»_\ \

\
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Evolution and progress
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Evolution (1980-1990s)

1985: Two full-sized (350 and 500 kW rated
at Toftestallen, Norway

1990: Asia and India
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Evolution 1990s-2000s

1991: LIMPET 500 kW, Scotland

| 1994: Waveroller, Sweden

ico, Azores, Portugz
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Evolution (2000s — 2010s)

3 .

DR O L
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Evolution (2000s — 2010s)

Aquamarine Power Ltd

OYSTER'WAVE

ENERGY CONVERTER

HYDROELECTRIC
PLA

POWER CONVERSION

]

NT_..
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Present)

lon (2000s —

Evolut

WAV
ENEREY

Eco Wave Power
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Evolution (2000s — Present)

|
|

-

Waves ové:rtoppiwng the
doubly curved ramp

Reservoir

Awm—) gy —
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Evolution (2000s — Present)
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Evolution (2000s — Present)

Mitriku, 300kW

Still operating, almost 12 years
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Current status

e ey
Corpower C4

New devices (2015s-Present)

SN N A —

LiftWEC
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Wave Energy Converters
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Why Waves ?

»Waves are amongst the highest energy density renewables
»Predictable (though not as solar) v Potential for variability reduction

> Persistence of resource v" Accelerate _the ITZnergy_ Tr_ansmon
v" Increase utilization of indigenous resources
»Access to the resource

v" Improve the environment

»Temporal Cross-Correlation v Sustainable Development
> Variability reduction 7 Renewable energies -
»Coastal protection i — wave resurce |

o
o
;

»Offshore hybrid systems
»Energy Benefits to isolated commt
»etc...

Normalised resource
o
>

o
N

o
N}

3
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WEC concepts
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Principles
1. OWC
A.  Floating
B.  Fixed structure
L. Isolated
(.  Breakwater
2. OB
A.  Floating
B.  Submerged
3. Overtopping (OT)
A.  Floating
B.  Fixed structure

3
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WEC concepts

Deployment

(depths)

d
d
d

Shoreline: 3m > d
Shallow: 3m <d < 25m

Intermediate 25m < d <
50m

Deep 50m < d < 100m

Very Deep 100m <d <
150m

Conceptd < 150m

)

T

Y V V V

Hydraulics
Generators
Turbines
Etc..
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Modelling a WEC
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Analytical Linear mathematical model — Point absorber

Basic Assumptions:

Dimension (WEC) is small compared
to the wave length

PTO, mooring, control forces are
linear

WEC does radiate waves

Over regular waves

63
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Understanding the mathematical model — Heaving
cylindrical PA

Iz(t) I 7(1)

motion oscillation restrained
1n waves 1n still water 1n waves
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Hydrodynamic modelling of WECs —
Numerical approaches

* Frequency domain methods — Boundary Element Method
* Linear potential flow
 Boundary integral equations (Green’s function approach)
 Mixed source/dipole formulation
* Least computational time

Liu et. al. 2019

» Time domain methods - Integro differential Cummin’s equation method

 Modelling of non-linear forces such as viscous damping and inertia, PTO forces, mooring
forces (more accurate)

- Computationally expensive compared to frequency domain methods
* Derive from frequency domain BEM method

3
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Hydrodynamic modelling of WECs —

Numerical approaches

* CFD methods
* Derived from Navier Stokes equation, Eulerian method
* Full non-linear modelling possible including turbulence effects
* RANS formulation most common using Volume of fluid method (Free surface modelling)
« Computationally expensive

: m
- -
- _
C— -

! () .l '-.0' Li.:ép‘_l: N -

- —
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Hydrodynamic modelling of WECs —
Numerical approaches

 Lagrangian methods — Smoothed particle Hydrodynamics
* Mesh free particle following
« Computationally intensive but less compared to CFD
« Commonly used: Dual SPHysics (Smoothed Particle Hydrodynamics)

) [flIF
[HI
il

il
0.377! i

D &

e ——
0.063 |

0.086 | ;

0.174+

0.534 |

11871

1.400 !

mmmmmm
mmmmmm
Jo———d
oooooo
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Estimating Power
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Non-linearities for detailed analysis

Detailed analysis based on BEM, non-linearities to be considered

Time domain simulation (e.g. Integro-differential Cummin’s equation

t
(M+ )X =Fex — | K(t—1)X r}dt+FH—|—FPTD—|—FV—|—FES

End Stop forces

Fos = —Kesdiag(X + Xes)u(—X — Xes)
— Kesdiag(X — Xes)u(X — Xes)

PTO force — linear, hydraulic
Viscous forces

1
Fv = —5pCpAp|V — Vo|(V — Vo)

73



Power Matrix (PM)

Models produces the responses according to excitation, operation, numerical
estimation of sub-components, controls & PTO.

After some hydrodynamic analysis aninversions

3
TUDelft

74



Producing Energy

Estimation of E,; production requires two main components:
) Power matrix (Bivariate or Trivariate)
1 Joint/Bivariate (or Trivariate) of location (metocean)

Potential methods:
Non-advisable, is to use coefficients, i.e. N1=90% and estimate the extractable energy

Eq = J n- Pwave(t) AWS
t=1

Waves comprise a highly statistical multi-parameter process, hence matrices of directionality-
occurrences-PM combined

nr MHpyo NpkDir

1
Eep =100 7 7 7 Dij* PM;j - Prpiri;

ij=11ij=1 ij=1

Interpolation methods

%
TU Delft Ea(t) = f

t=1

t=o00

PPMi,j(Hmoi,jiTmoz | peak |m01i'j;PkDirl-’j)
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Power production

Proper method is the combination of directionality-occurrences-P
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Long-term dataset
Trusted/validated sources
Joint distributions
Statistical Properties
Consider depth

Selecting device
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Don’t’s

Data from non-viable depths
Lots of gaps in measurements
Un-validated/obscure sources
>3-hour intervals

Improper use of coefficients
Improper WEC applicability
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Power production

s om o em sm _am _nw

c

77



Utilisation rates
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Wave energy in the Netherlands
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WEC arrays
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WEC arrays

Why? -
g Parray((!))
* Reduce costs qd(w) = Np
. - )
* WEC produce low power compared to wind isolated (@)
» Wake effects can be constructive
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WEC arrays
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y (m)

WEC array interactions
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