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Melbourne base, global outlook

2



© 2025 – P. Mancarella IEEE PES DLP, “Vuelta a Espana” 2025, Bilbao - Resilience 3

Top 5 Student-
friendly city**

(Walk and bike 
everywhere!)

Multicultural and 
vibrant: unique 

mix of 
Mediterranean 

and Asian culture 

Consistently ranked 
among the world’s 
most liveable cities

(#1 for many years 
in a row)*

*The Economist Intelligence Unit 

**QS Best Student Cities 2023

Australia’s and one 
of the world’s 

greatest sporting 
and cultural capital 

The City of Melbourne

3

Source: iStock 
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The University of Melbourne

Top #20-#30 
University in the 

world

#1 University in 
Australia

50,000+ student 
population

40% International 
students

15 students enrol in Australia’s first Engineering course at the 
University of Melbourne

First female engineering graduate

CSIRAC: 1st Australian-built computer housed at the University of 
Melbourne

1861

1942

1955
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Power and energy systems at UniMelb

https://electrical.eng.unimelb.edu.au/power-energy
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Source: AEMO

The Australian East Coast power system                          
and the National Electricity Market (NEM)
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Vision for a new grid

Source: AEMO, ISP 2024

NEM forecast installed generation capacity to 2050, “Step change” scenario 

https://aemo.com.au/-/media/files/major-publications/isp/2024/2024-integrated-system-plan-isp.pdf?la=en

And solar PV, overall?

PV
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A postcard from the future:
100% demand supply from solar in South Australia…

 Five years ago!

Source: AEMO and OpenNEM

100% load covered by 
renewables, of which 
75% DER (rooftop PV)
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Fast-forward to the future!
BAU net-zero operation in South Australia…

Source: AEMO and OpenNEM, October 2023

“South Australia grid operates at 99.8 per cent wind and solar over past seven days” (Oct 2023)
RenewEconomy, https://reneweconomy.com.au/south-australia-grid-operates-at-99-8-per-cent-wind-and-solar-over-past-seven-days/

“Wind dominated and met 56.1 per cent of local demand throughout the 148 hour period, with 
rooftop solar providing a further 23.4 per cent, and dominating during the day-time hours”

But what does it take?
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A changing landscape

Generation & 
Transmission 

Planning

Long-term 
Generation 
Scheduling

Time-ahead 
Generation 
Scheduling

System 
Balancing

Actual delivery: 

physical generation 
& consumption

One day to one 
hour before 

delivery

Months to 
days before 

delivery

Years before 
delivery

Balancing supply and demand at all times to guarantee system reliability

Asset 
investment Primary and secondary FR and 

tertiary reserves

Regulation/load following

Balancing markets

Economic dispatch and UC

Time-ahead marketsFuel contracts

Maintenance planning 

Inertia and 
system 
strength

Ramping 
and 

flexibility

Short term 
economic 
dispatch

Extreme 
events

Operating with securityPlanning for adequacy

Resilience
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Reliability, resilience and continuity of supply

Continuity of 

Supply

Adequacy Security Resilience

Reliability

Largely known, credible, 

“discrete” threats

Often unknown, 

“indistinct”, less 

credible threats
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Reliability, resilience and continuity of supply

Continuity of 

Supply

Adequacy Security Resilience

Reliability

Largely known, credible, 

“discrete” threats

Often unknown, 

“indistinct”, less 

credible threats

“Rara avis in terris 
nigroque simillima cygno” 

Juvenal, 82 AD
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The “new physics”

Risk Emerging issues Possible Mitigations

Frequency control and 

inertia

- Sustained frequency excursions (regulation)

- High ROCOF following contingency

- Insufficient regional inertia

- Insufficient PFR

- Risk of low-inertia and insufficient PFR after 

separation 

- Minimum inertia levels

- Compulsory droop response

- Additional amount of PFR

- Co-optimization of energy, frequency response, and (regional and system-

level) inertia

- Regional allocation of reserves

- New sources of fast frequency response (e.g., batteries, electrolysers)

- Management of largest contingency and interconnector flows (system at 

risk of regional separation)

Variability, uncertainty 

and visibility

- Large variation in net demand

- Insufficient short- and medium-term and ramping 

reserves

- Visibility of Distributed Energy Resources (DER)

- Better forecasting

- Artificial intelligence to assess reserves (e.g., dynamic Bayesian belief 

network tools)

- Use of more flexible resources including energy storage (e.g., pumped 

hydro) 

System strength and 

immunity

- Fault current shortage

- Voltage instability

- Sustained voltage oscillations after fault

- Fault-ride through issues

- Minimum demand issues

- Minimum level of inertia and fault current (generators constrained on)

- Synchronous condensers

- STATCOM and SVC to improve voltage stability

- Improvements of control loops (especially in solar farms)

- Grid forming inverters

P. Mancarella and F. Billimoria, ‘The Fragile Grid – The physics and economics of security services in low-carbon power systems”, IEEE Power and Energy Magazine, 2021
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The “new physics”

Risk Emerging issues Possible Mitigations

Frequency control and 

inertia

- Sustained frequency excursions (regulation)

- High ROCOF following contingency

- Insufficient regional inertia

- Insufficient PFR

- Risk of low-inertia and insufficient PFR after 

separation 

- Minimum inertia levels

- Compulsory droop response

- Additional amount of PFR

- Co-optimization of energy, frequency response, and (regional and system-

level) inertia

- Regional allocation of reserves

- New sources of fast frequency response (e.g., batteries, electrolysers)

- Management of largest contingency and interconnector flows (system at 

risk of regional separation)

Variability, uncertainty 

and visibility

- Large variation in net demand

- Insufficient short- and medium-term and ramping 

reserves

- Visibility of Distributed Energy Resources (DER)

- Better forecasting

- Artificial intelligence to assess reserves (e.g., dynamic Bayesian belief 

network tools)

- Use of more flexible resources including energy storage (e.g., pumped 

hydro) 

System strength and 

immunity

- Fault current shortage

- Voltage instability

- Sustained voltage oscillations after fault

- Fault-ride through issues

- Minimum demand issues

- Minimum level of inertia and fault current (generators constrained on)

- Synchronous condensers

- STATCOM and SVC to improve voltage stability

- Improvements of control loops (especially in solar farms)

- Grid forming inverters

P. Mancarella and F. Billimoria, ‘The Fragile Grid – The physics and economics of security services in low-carbon power systems”, IEEE Power and Energy Magazine, 2021
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A textbook example: 
The 2016 “black system” event

Heywood AC 
Interconnector

Source: AEMO

import

thermal

wind

Source: ABC

Source: AEMO
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Frequency control challenges in 
renewables-rich systems

~
Low-inertia conditions → 

faster frequency dynamics

Traditional Frequency 
Control Ancillary 
Services (FCAS)

P. Mancarella et al., “Power system security assessment of the future National Electricity Market”, Report in support of the “Finkel Review”, June 2017
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The dawn of new frequency control and inertia                               
services and markets

Co-optimization of energy, frequency control ancillary services, and inertia

P. Mancarella et al., “Power system security assessment of the future National Electricity Market”, Report in support of the “Finkel Review”, June 2017
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Frequency response security maps

P
ri
m
ar
y
	F
re
q
u
e
n
cy
	R
e
sp
o
n
se
	[
M
W
]

Aggregated	inertia	after	contingency	[GWs]

Frequency	response	security	map

P
ri
m
ar
y
	F
re
q
u
e
n
cy
	R
e
sp
o
n
se
	[
M
W
]

Aggregated	inertia	after	contingency	[GWs]

Frequency	response	security	map

Secure	Area

Nadir	Requirement

Static	Requirement

ROCOF	Requirement

Secure	Area● OP1

● OP3

OP4
●

P
ri
m
ar
y
	F
re
q
u
e
n
cy
	R
e
sp
o
n
se
	[
M
W
]

Aggregated	inertia	after	contingency	[GWs]

Frequency	response	security	map

Secure	Area

Nadir	Requirement

Static	Requirement

ROCOF	Requirement

Secure	Area● OP1

● OP3

OP4
●

P
ri
m
ar
y
	F
re
q
u
e
n
cy
	R
e
sp
o
n
se
	[
M
W
]

Aggregated	inertia	after	contingency	[GWs]

Frequency	response	security	map

Secure	Area

Nadir	Requirement

Static	Requirement

ROCOF	Requirement

Secure	Area

P
ri
m
ar
y
	F
re
q
u
e
n
cy
	R
e
sp
o
n
se
	[
M
W
]

Aggregated	inertia	after	contingency	[GWs]

Frequency	response	security	map

Secure	Area

Nadir	Requirement

Static	Requirement

ROCOF	Requirement

Secure	Area

High InertiaLow Inertia

P. Mancarella et al., “Power system security assessment of the future National Electricity Market”, Report in support of the “Finkel Review”, June 2017

Adapt controls (and markets!) 
to the new physics!
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Making history:
Engineering the grid of the future

Source: Neoen, PV Magazine Australia

Hornsdale Power Reserve, Jamestown, South Australia

“Tesla Big Battery”

FFR
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M. Ghazavi Dozein, et al., “Fast frequency response from utility scale hydrogen electrolysers”, IEEE Trans. Sustainable Energy, 2021

M. Ghazavi Dozein, et al., “Virtual Inertia Response and Frequency Control Ancillary Services from Hydrogen Electrolyzers”, IEEE Tran. on Pow. Syst, 2022

S. D. Tavakoli, et al., "Grid-Forming Services From Hydrogen Electrolyzers“, IEEE Transactions on Sustainable Energy, 2023

Not only batteries!
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“Synchronous” vs “controlled” response

𝑃𝐹𝑅 

𝐼𝑁𝐸𝑅𝑇𝐼𝐴
~33.3

𝑃𝐹𝑅

𝐹𝐹𝑅
~5

𝐹𝐹𝑅

𝐼𝑁𝐸𝑅𝑇𝐼𝐴
~6. 𝟕

battery, electrolyser

B. Moya, et al., “Techno-Economic Assessment of Inertia Measurements: A Case Study for the Australian National Electricity Market”, IREP and SEGAN 2025 
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Is inertia hiding?
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B. Moya, et al., “Techno-Economic Assessment of Inertia Measurements: A Case Study for the Australian National Electricity Market”, IREP 2025 
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Real-life example: 
Cascading failures in May 2021

Generation 
deficit in QLD

NSW generators to cover 
the generation loss

Very sharp rise in 
active power flowing 

through QNI

Beyond the 
interconnector nominal 

capacity! 

QNI trips! Queensland 
separation!

AEMO, “Trip of multiple generators and lines in Queensland and associated under-frequency load shedding on 25 May 2021”, October 2021 
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Real-life example: 
Cascading failures in May 2021

Around 2.3 GW 
load shedding in 

QLD!

AEMO, “Trip of multiple generators and lines in Queensland and associated under-frequency load shedding on 25 May 2021”, October 2021 

Need to protect the system against islanding: co-optimization of contingency size

Generation 
deficit in QLD
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Separation-constrained UC/OPF 

SA

G

TAS

G

NSW

G

QLD

G

VIC

G

F

Area A

Area B

System

QLD map

SA-VIC-NSW-TAS map

S. Puschel, et al., “Separation event-constrained optimal power flow to enhance resilience in low-inertia power systems”, Electric Power System Research, 2020

Regional co-optimization of energy, frequency control ancillary services,
inertia, contingency level, and interconnector flows
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The “new physics”

Risk Emerging issues Possible Mitigations

Frequency control and 

inertia

- Sustained frequency excursions (regulation)

- High ROCOF following contingency

- Insufficient regional inertia

- Insufficient PFR

- Risk of low-inertia and insufficient PFR after 

separation 

- Minimum inertia levels

- Compulsory droop response

- Additional amount of PFR

- Co-optimization of energy, frequency response, and (regional and system-

level) inertia

- Regional allocation of reserves

- New sources of fast frequency response (e.g., batteries, electrolysers)

- Management of largest contingency and interconnector flows (system at 

risk of regional separation)

Variability, uncertainty 

and visibility

- Large variation in net demand

- Insufficient short- and medium-term and ramping 

reserves

- Visibility of Distributed Energy Resources (DER)

- Better forecasting

- Artificial intelligence to assess reserves (e.g., dynamic Bayesian belief 

network tools)

- Use of more flexible resources including energy storage (e.g., pumped 

hydro) 

System strength and 

immunity

- Fault current shortage

- Voltage instability

- Sustained voltage oscillations after fault

- Fault-ride through issues

- Minimum demand issues

- Minimum level of inertia and fault current (generators constrained on)

- Synchronous condensers

- STATCOM and SVC to improve voltage stability

- Improvements of control loops (especially in solar farms)

- Grid forming inverters

P. Mancarella and F. Billimoria, ‘The Fragile Grid – The physics and economics of security services in low-carbon power systems”, IEEE Power and Energy Magazine, 2021
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ROOFTOP PV

SYSTEM FREQUENCY

~400 MW

Challenges with weather-driven DER:                             
Rapid cloud formation in Perth, 16 March 2021

Slide courtesy of Julius Susanto, AEMO
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Security in a weather-fuelled system:
DER impact on reserves

“Electricity provider authorised to switch off rooftop solar in SA in emergencies”

Source: ABC News, 27 August 2020

This is the consequence of DER not being 
visible/dispatchable/controllable!

How would you disconnect DER for security reasons? 
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Integrated provision of                      
system and local services from DER

M. Liu et al., “Grid and market services from the edge”, IEEE Power and Energy Magazine, July/August 2021
S. Riaz et al, “Modelling and characterisation of flexibility from distributed energy resources”,  IEEE Transactions on Power Systems, July 2021

Key role of locational economic valuation 
of active and reactive power from DER

C. Bas Domenech, et al., “Towards Distributed Energy Markets: Accurate and Intuitive DLMP Decomposition”, IEEE Trans. Energy Mark., Policy and Reg., Jan 2024
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The “new physics”

Risk Emerging issues Possible Mitigations

Frequency control and 

inertia

- Sustained frequency excursions (regulation)

- High ROCOF following contingency

- Insufficient regional inertia

- Insufficient PFR

- Risk of low-inertia and insufficient PFR after 

separation 

- Minimum inertia levels

- Compulsory droop response

- Additional amount of PFR

- Co-optimization of energy, frequency response, and (regional and system-

level) inertia

- Regional allocation of reserves

- New sources of fast frequency response (e.g., batteries, electrolysers)

- Management of largest contingency and interconnector flows (system at 

risk of regional separation)

Variability, uncertainty 

and visibility

- Large variation in net demand

- Insufficient short- and medium-term and ramping 

reserves

- Visibility of Distributed Energy Resources (DER)

- Better forecasting

- Artificial intelligence to assess reserves (e.g., dynamic Bayesian belief 

network tools)

- Use of more flexible resources including energy storage (e.g., pumped 

hydro) 

System strength and 

immunity

- Fault current shortage

- Voltage instability

- Sustained voltage oscillations after fault

- Fault-ride through issues

- Minimum demand issues

- Minimum level of inertia and fault current (generators constrained on)

- Synchronous condensers

- STATCOM and SVC to improve voltage stability

- Improvements of control loops (especially in solar farms)

- Grid forming inverters

P. Mancarella and F. Billimoria, ‘The Fragile Grid – The physics and economics of security services in low-carbon power systems”, IEEE Power and Energy Magazine, 2021
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Increasing ramping requirements:
The Australian duck

Source: AEMO, “Renewable Integration Study, Stage 1 - Appendix C: Managing Variability and Uncertainty”, April 2020

Minimum load issues
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Source: AEMO and OpenNEM

Why are these gas 
generators operating with 

these market prices? 

Impact of DER on reactive power reserves

What is the risk of 
operating with 
high voltages?
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Active-reactive power interaction in weak grids

M. Ghazavi, O Gomis-Bellmunt, P. Mancarella, “Simultaneous Provision of Dynamic Active and Reactive Power Response from Utility-scale Battery Energy Storage Systems in Weak Grids”, IEEE Transactions on Power Systems, 2021

M. Ghazavi Dozein, B. Pal, P. Mancarella, “Dynamics of Inverter-Based Resources in Weak Distribution Grids”, IEEE Transactions on Power Systems, 2022
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Sympathetic DER tripping:
November 2019 event in Queensland

180 MW-310 MW PV disconnection following a fault
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Resorting to old school technologies:
Effect of synchronous compensators

Source: https://reneweconomy.com.au/south-australia-sets-stunning-new-benchmark-as-gas-output-halved-and-wind-at-record-highs/
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Henry Ford with his “horseless CAR-riage”

Pic sourced from the internet
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Power system stability classification 

IEEE Power System Dynamic Performance Committee, "Task Force on stability definitions and characterization of dynamic behaviour in systems with high penetration of power electronic interfaced 

technologies,", 2020.

Source: IEEE Power System Dynamic Performance Committee, “Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies”, 2020

Somehow associated with “system strength”

New, faster instability phenomena
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But what is system strength?

M. Ghazavi Dozein, B. Berry, J. V. Milanović, and P. Mancarella, “System strength beyond fault level”, IEEE Access, 2025
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New technology options to deliver 
system strength products

IBR Type 

Contributing Factors to System Strength 

Reactive 

power 
VBAI 

Virtual 

inertia 
FFR 

Cont. 

FCAS 

Regulation 

FCAS 

Peak current/negative 

component current 
Damping 

Synchronizing 

power/services 

Grid 

following 

Legacy          

Enhanced          

Grid 

forming 

Type 1          

Type 2          

Type 3          

Type 4          

 
And network reinforcement can enhance several forms of system strength too!

So, it’s not only about synchronous machines…

M. Ghazavi Dozein, B. Berry, J. V. Milanović, and P. Mancarella, “System strength beyond fault level”, IEEE Access, 2025
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Can renewables provide voltage support?

NSW Generation Map [Source: AEMO]Courtesy of Julius Susanto

https://aemo.com.au/-/media/files/electricity/nem/network_connections/generation-maps/nsw-map.pdf?la=en
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Figure source: NREL, Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant, 2015

How about batteries?

Do we really need those gas plants on?
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Example: Dalrymple battery

▪ 30 MW/8 MWh BESS

▪ Lithium-ion technology 

▪ Connected to the SA grid via a 33 kV/132 kV transformer 

▪ Supplies average local demand of 3 MW, 8 MW peak

▪ Equipped with virtual synchronous machine control with converter overloading 
capability of 2 pu for 2 seconds

Simplified single-line diagram of the York Peninsula in South Australia

ElectraNet,” ESCRI-SA battery storage project operational report#3, August 2020.
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Dalrymple battery

Single-phase–to-ground 
fault on January 13, 2020

ElectraNet,” ESCRI-SA battery storage project operational report#3, August 2020.

Battery reactive power response

Battery terminal voltage dynamics

From “grid following” to “grid 
forming”
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Virtual inertia response 
following the SA separation, 

November 16, 2019

Dynamic behaviour of the Dalrymple 
battery during the event

SA frequency dynamics 
following the separation event

S. Cherevatsky et. al., “Grid forming energy storage system 
addresses challenges of grids with high penetration of renewables 
(A case study),” 2020 CIGRE Paris session, pp. 1-13, 2020

The future emulates the past:
“Virtual synchronous machine”

The 30 MW Dalrymple battery

How about distribution networks?
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Integrated provision of                      
system and local services from DER

M. Liu et al., “Grid and market services from the edge”, IEEE Power and Energy Magazine, July/August 2021
S. Riaz et al, “Modelling and characterisation of flexibility from distributed energy resources”,  IEEE Transactions on Power Systems, July 2021

C. Bas Domenech, et al., “Towards Distributed Energy Markets: Accurate and Intuitive DLMP Decomposition”, IEEE Trans. Energy Mark., Policy and Reg., Jan 2024
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Power system resilience and grid fragility

What is an extreme event in a fragile grid?

P. Mancarella, “Electricity grid fragility and resilience in a future net-zero carbon economy”, Oxford Energy Forum – Electricity Networks in a Net-Zero-Carbon Economy, 124, pages 41-
45, Sept 2020

J. Eggleston, C. Zuur, P. Mancarella, “From security to resilience: technical and regulatory options to manage extreme events in low-carbon grids”, IEEE Power & Energy Magazine, 
Sept/Oct 2021
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System frequency 
Voltage magnitude

 and angle 

IBR control instability, small-signal instability 

Lack or reactive power control, voltage instability

System strength Frequency Stability

Fragility challenges in weak grids

Cascading events (frequency and angle instability) 
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Grid fragility example:                                                                                        
demand disconnection event, UK, 09/08/19 

The LoM trigger was based on embedded 
generation protection relay settings based on 
vector shift (about 150 MW) and Rate Of 
Change Of Frequency (ROCOF) (about 350 
MW, as “old” embedded generators had 
0.125 Hz/s settings, and the frequency went 
down by about 0.4 Hz during the first 3 s) 

The 950 MW low-frequency demand disconnection 

(LFDD) schemes also triggered substantial (almost 600 

MW!) embedded generation disconnection, so that the 

net demand disconnection was actually only 350 MW

200 MW of embedded generation tripped at the frequency threshold 

of 49 Hz, exacerbating the cascading before demand disconnection

49 Hz

Source: UK National Grid ESO, “Technical report on the events of 9 August 2019”, https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_final.pdf

https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_final.pdf
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demand disconnection event, UK, 09/08/19 
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Change Of Frequency (ROCOF) (about 350 
MW, as “old” embedded generators had 
0.125 Hz/s settings, and the frequency went 
down by about 0.4 Hz during the first 3 s) 

The 950 MW low-frequency demand disconnection 

(LFDD) schemes also triggered substantial (almost 600 

MW!) embedded generation disconnection, so that the 

net demand disconnection was actually only 350 MW

200 MW of embedded generation tripped at the frequency threshold 

of 49 Hz, exacerbating the cascading before demand disconnection

49 Hz

Source: UK National Grid ESO, “Technical report on the events of 9 August 2019”, https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_final.pdf

White…

https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_final.pdf
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Grid fragility example:                                                                                        
demand disconnection event, UK, 09/08/19 

The LoM trigger was based on embedded 
generation protection relay settings based on 
vector shift (about 150 MW) and Rate Of 
Change Of Frequency (ROCOF) (about 350 
MW, as “old” embedded generators had 
0.125 Hz/s settings, and the frequency went 
down by about 0.4 Hz during the first 3 s) 

The 950 MW low-frequency demand disconnection 

(LFDD) schemes also triggered substantial (almost 600 

MW!) embedded generation disconnection, so that the 

net demand disconnection was actually only 350 MW

200 MW of embedded generation tripped at the frequency threshold 

of 49 Hz, exacerbating the cascading before demand disconnection

49 Hz

Source: UK National Grid ESO, “Technical report on the events of 9 August 2019”, https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_final.pdf

… or black?

https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_final.pdf
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Power system resilience and grid fragility

P. Mancarella, “Electricity grid fragility and resilience in a future net-zero carbon economy”, Oxford Energy Forum – Electricity Networks in a Net-Zero-Carbon Economy, 124, pages 41-
45, Sept 2020

In a fragile grid, security and resilience merge!

J. Eggleston, C. Zuur, P. Mancarella, “From security to resilience: technical and regulatory options to manage extreme events in low-carbon grids”, IEEE Power & Energy Magazine, 
Sept/Oct 2021
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Categorisation of new, “resilience” events:
moving beyond security

J. Eggleston, C. Zuur, P. Mancarella, “From security to resilience: technical and regulatory options to manage extreme events in low-carbon grids”, IEEE Power & Energy Magazine, 
Sept/Oct 2021



© 2025 – P. Mancarella IEEE PES DLP, “Vuelta a Espana” 2025, Bilbao - Resilience 53

Grid fragility example:                                                                                        
Iberian peninsula blackout, 28 April 2025 

What should be done moving forward?
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Will more redundancy
enhance reliability (and resilience)? 

D. Kirschen and G. Strbac, “Why investments do not prevent blackouts”, The Electricity Journal, March 2004 
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Resilience 
Enhancement

Smarter?

Bigger?Stronger?

Planning for resilience:
The Resilience Trilemma

Upgrade 

existing 

infrastructure, 

asset life 

extension, etc.

Build new 

infrastructure, 

e.g. transmission 

lines, 

substations, etc.

Make the network more 

responsive (e.g. faster 

restoration), self-

adaptive, resourceful, 

etc.

M. Panteli and P. Mancarella, The Grid: Stronger, Bigger, Smarter? Presenting a conceptual framework of power system resilience, IEEE Power and Energy Magazine, May/June 2015

R. Moreno, et al., “From Reliability to Resilience: Planning the Grid Against the Extremes”, IEEE Power and Energy Magazine, July-August 2020

M. Panteli, et al., "Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies," Proceedings of the IEEE, 105, 7, pp. 1202-1213, July 2017
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Planning for the new grid

N1 N2

N3

L12

L23L13

D

G1 G2

G3

W

S

QB

L’23 B

R. Moreno, A. Street, J.M. Arroyo, and P. Mancarella, “Planning Low-Carbon Electricity Systems under Uncertainty Considering Operational Flexibility and Smart Grid 
Technologies”, Philosophical Trans. Royal Society A, June 2017

B. Moya, et al., “Uncertainty representation in investment planning of low-carbon power systems”, Electric Power Systems Research, Volume 212, Nov. 2022, 108470

Redundancy
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Redundancy

Planning for the new grid

R. Moreno, A. Street, J.M. Arroyo, and P. Mancarella, “Planning Low-Carbon Electricity Systems under Uncertainty Considering Operational Flexibility and Smart Grid 
Technologies”, Philosophical Trans. Royal Society A, June 2017

B. Moya, et al., “Uncertainty representation in investment planning of low-carbon power systems”, Electric Power Systems Research, Volume 212, Nov. 2022, 108470
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Planning for the new grid

Need to think in terms of cost-value-risk analysis!

R. Moreno, A. Street, J.M. Arroyo, and P. Mancarella, “Planning Low-Carbon Electricity Systems under Uncertainty Considering Operational Flexibility and Smart Grid 
Technologies”, Philosophical Trans. Royal Society A, June 2017

B. Moya, et al., “Uncertainty representation in investment planning of low-carbon power systems”, Electric Power Systems Research, Volume 212, Nov. 2022, 108470

B.V. Venkatasubramanian, et al., “Investment planning framework for mitigating 
cascading failures”, Electric Power Systems Research, Volume 234, September 2024 

Need to plan for “expected” cascading! 



© 2025 – P. Mancarella IEEE PES DLP, “Vuelta a Espana” 2025, Bilbao - Resilience 59

F. Billimoria et al., "Market and regulatory frameworks for operational security in decarbonising electricity systems: from physics to economics”, Oxford Open Energy, 2022

Key starting point:
designing new markets for the new physics…
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US-UK-Australia NSF Global Centre                   
on Climate Change and Clean Energy 

https://www.csiro.au/en/news/All/News/2023/September/Australian-institutes-spearhead-global-efforts-in-clean-energy-innovation

https://www.unimelb.edu.au/newsroom/news/2023/september/new-global-research-centre-to-provide-epic-clean-energy-boost

Electric Power Innovation for a Carbon-free Society (EPICS) 

Interested in joining?

We are hiring! ☺

https://www.csiro.au/en/news/All/News/2023/September/Australian-institutes-spearhead-global-efforts-in-clean-energy-innovation
https://www.unimelb.edu.au/newsroom/news/2023/september/new-global-research-centre-to-provide-epic-clean-energy-boost
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My “Vuelta a Espana”

▪ Barcelona (UPC), Wednesday 28th May

– Security, Reliability and Resilience in Low-carbon Power Systems

▪ Madrid (Comillas), Tuesday 3rd June

– Economics, markets and regulation for new essential system services: first 
principles and practical experiences

▪ Ciudad Real (UCLM, Thursday 5th June

– Integrated planning of transmission and distribution systems

▪ Sevilla (USE), Monday 9th June 

– Running a net-zero grid in 2025: experiences from the Australian “real-world lab”

▪ Malaga (UM), Thursday 12th June

– Utility-scale and distributed batteries in renewables-dominated power systems: 
experiences and lessons learnt from Australia

▪ Bilbao (UPV/EHU) Thursday 19th June

– Security, Reliability and Resilience in Low-carbon Power Systems
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Chilean Power System", IEEE PES 2017 General Meeting, Chicago, USA, Jul 2017.

▪ M. Panteli, P. Mancarella, C. Pickering, S. Wilkinson, and R. Dawson, “Power System 
Resilience to Extreme Weather: Fragility Modelling, Probabilistic Impact Assessment, and 
Adaptation Measures”, IEEE Transactions on Power Systems, vol. 32, no. 5, September 
2017.
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Rudnick, H., “Improving distribution network resilience against earthquakes", IET 
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Selected references on resilience
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Resilience to Extreme Weather Events Using Defensive Islanding”, IEEE Transactions on 
Smart Grid, Special issue on “Power Grid Resilience”, vol. 7, no. 6, pp. 2913-2922, March 
2016.

▪ M. Panteli and P. Mancarella, “The Grid: Stronger, Bigger, Smarter? Presenting a Conceptual 
Framework of Power System Resilience”, IEEE Power and Energy Magazine, vol. 13, no. 3, 
pp. 58-66, 2015.

▪ M. Panteli and P. Mancarella, “Influence of Extreme Weather and Climate Change on the 
Resilience of Power Systems: Impacts and Possible Mitigation Strategies”, Electric Power 
Systems Research, vol. 127, pp. 259-270, October 2015.

▪ G. Fu, S. Wilkinson, R.J. Dawson, H.J. Fowler, C. Kilsby, M. Panteli and P. Mancarella, “An 
Integrated Approach to Assess the Resilience of Future Electricity Infrastructure Networks to 
Climate Hazards”, IEEE Systems Journal, vol. PP, no. 99, pp. 1-12, May 2017

Selected references on resilience
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Thank you!
Any question?

pierluigi.mancarella@unimelb.edu.au
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Security, reliability and resilience 
in low-carbon power systems

IEEE Power and Energy Society Distinguished Lecturer Program

“Vuelta a Espana” 2025

UPV/EHU School of Engineering, Bilbao, 19th June 2025

Prof Pierluigi Mancarella, FIEEE

Chair of Electrical Power Systems, The University of Melbourne

Professor of Smart Energy Systems, The University of Manchester

pierluigi.mancarella@unimelb.edu.au
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DER benefits across the whole system

1

2 3

ADS

ADS: Active Distribution System

ADS

ADS

B.V. Venkatasubramanian, et al., “Investment planning framework for mitigating cascading failures”, Electric Power Systems Research, Volume 234, September 2024 

P. Apablaza et al., “Valuing DER Flexibility in an Uncertain and Risk-Aware Low-Carbon Power System Planning Context”, IREP and SEGAN, 2025

P. Apablaza et al., “Assessing the Impact of DER in the Expansion of Low-Carbon Power Systems Under Deep Uncertainty”, Electric Power System Research, 2024

P. Mancarella, “Electricity grid fragility and resilience in a future net-zero carbon economy”, Oxford Energy Forum – Electricity Networks in a Net-Zero-Carbon Economy, 124, pages 41-
45, Sept 2020

▪ Orchestrated DER and network 
investment complementarity and 
synergy

▪ Benefits from DER orchestration better 
captured when considering planning 
uncertainty and network investment 
risk

▪ DER may systematically reduce:

– investment requirements

– investment uncertainty           
→ risk-hedge value

▪ Greatly enhanced system resilience!

▪ Consistent with planning for 
“expected” cascading 
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Moreno, et al., “Microgrids Against Wildfires: Distributed Energy Resources Enhance System Resilience”. IEEE Power and Energy Magazine, 20(1), 78-89, 2022.

Moreno, et al., “From Reliability to Resilience: Planning the Grid Against the Extremes”, IEEE Power and Energy Magazine, July-August 2020

Y. Zhou, et al., “System-level assessment of reliability and resilience provision from microgrids”, Applied Energy, Volume 230, 15 November 2018, Pages 374-392

Optimal integrated system-DER design

DER provide insurance policy against extreme events! 

Can also provide value from day-by-day market operation

Change completely the network investment profile -> less redundancy, smarter grid!

But a different regulatory set-up is needed!
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Dalrymple battery

Single-phase–to-ground 
fault on January 13, 2020

ElectraNet,” ESCRI-SA battery storage project operational report#3, August 2020.

From “grid following” to “grid 
forming”

Battery reactive power response

Battery terminal voltage dynamics
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