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Part 2 - NWT Experiments and Implementation

o Free Decay Experiments
o Input Force

Wave driven motion
Moorings

Currents

Wind turbines

Machine Learning
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Types of experiments and measurements

Free decay

Displacement (mil

2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
wave tank data - Part 1: Numerical wave tank identification tests, |IEEE Transactions on
Sustainable Energy, 2016
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Types of experiments and measurements

Free decay
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2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
wave tank data - Part 1: Numerical wave tank identification tests, |IEEE Transactions on
Sustainable Energy, 2016
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Types of experiments and measurements

Free decay : Reflection analysis
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Hydrodynamics

Hydrodynamic Nonlinearities
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Hydrodynamics

Hydrodynamic Nonlinearities

o Viscosity

@ Nonlinear ocean waves

o Time-varying wetted body surface
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Hydrodynamics

Hydrodynamic Nonlinearities - Viscosity

Viscosity

o Viscosity gives rise to drag forces, resulting from pressure/form drag and
skin friction drag.

o For WEGCs, pressure drag is the main contributor and skin friction is
typically negligible. Pressure drag is caused by flow separation and vortex
shedding, whose force on the WEC is nonlinear, increasing quadratically
with the relative WEC-water velocity.

Floating cylinder

Vortex shedding

!Davidson, Giorgi and Ringwood, Linear parametric hydrodynamic models for ocean wave
energy converters identified from numerical wave tank experiments, Ocean Engineering, 2015

Numerical Wave Tank testing for Marine Renewable Energy Devices



Hydrodynamics

Hydrodynamic Nonlinearities - Nonlinear ocean waves
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!Le Mehaute, B. An Introduction to Hydrodynamics and Water Waves; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 1976.
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Hydrodynamics

Hydrodynamic Nonlinearities - Nonlinear ocean waves

Enaggerated Vertical boske
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Hydrodynamics

Hydrodynamic Nonlinearities - Time-varying wetted body surface
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Equilibrium position and geometries of example sphere and cone

4m

Still water

Hydrostatic restoring force (N)

0.5 0 05 1
Heave displacement (m)

!Davidson and Costello, Efficient nonlinear hydrodynamic models for wave energy converter
design - A scoping study, Journal of Marine Science and Engineering (Special Issue " Nonlinear
Numerical Modelling of Wave Energy Converters"), 2019
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Hydrodynamics

Hydrodynamic Nonlinearities - Time-varying wetted body surface
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!Davidson, Windt, Giorgi, Genest and Ringwood, Evaluation of Energy Maximising Control
Systems for WECs using OpenFOAM, OpenFOAM - Selected papers from the 11th Workshop,
2019
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Example
Free Decay of a Sphere

Hy = 0.1D = 30 mm Hy = 03D = 90 mm Hy = 05D = 150 mm
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Example

Free Decay of a Sphere
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Hy = 01D = 30 mm Hy = 03D = 90 mm

Hy = 05D = 150 mm
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Free Decay of a Sphere

Benchmark comparison
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Free Decay of a Sphere

Benchmark comparison

YKramer et al, Highly Accurate Experimental Heave Decay Tests with a Floating Sphere: A
Public Benchmark Dataset for Model Validation of Fluid-Structure Interaction, Energies, 2021
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Free Decay of a Sphere

Optimising the NWT
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Free Decay of a Sphere

Modelling the radiated wave
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Free Decay of a Sphere

Modelling the radiated wave
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Input Force
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Input Force
Floating body dynamics

Pressure over instantaneous

[__Navier-Stokes equauon ]< U

wetted body surface
Update body and fiuid
G‘ states, the_n re-solve at
] Hydrodynamic force on body ] next/ime.step

~ >

Newton’s law of motion for
the body
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Input Force
Implementation

Pressure over instantaneous

[__Navier-Stokes equauon ]< L|

wetted body surface
Update body and fiuid
G states, the_n re-solve at
I Hydrodynamic force on body I next Sme.step

L

Force |Fj, | Newton's law of motion for
Signal the body
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Input Force

Chirp signal
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2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
wave tank data - Part 1: Numerical wave tank identification tests, |IEEE Transactions on
Sustainable Energy, 2016
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Same device

Free decay
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2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
wave tank data - Part 1: Numerical wave tank identification tests, |IEEE Transactions on
Sustainable Energy, 2016
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Input Force

Up-Chirp or Down-Chirp???

Displacement (m)
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2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
wave tank data - Part 1: Numerical wave tank identification tests, |IEEE Transactions on
Sustainable Energy, 2016
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Input Force

Signal Options - Time domain
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2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
wave tank data - Part 1: Numerical wave tank identification tests, |IEEE Transactions on
Sustainable Energy, 2016
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Input Force

Signal Options - Frequency and Amplitude space
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2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
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Input Force

RARP Signal

Force (kN/m}

(b) ) ) Time (s)

-00%

Displacement (m)

Time (s)

2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
wave tank data - Part 1: Numerical wave tank identification tests, |IEEE Transactions on
Sustainable Energy, 2016
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Input Force

Multisine Signal
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2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
wave tank data - Part 1: Numerical wave tank identification tests, |IEEE Transactions on
Sustainable Energy, 2016
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Input Force

Outputs - Frequency and Amplitude space
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2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
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Sustainable Energy, 2016
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Input force
Small amplitude verification against linear models

Sinusoidal input PTO force : Amplitude 960N )
0.5 ==Curmming BEM
« ARX
—= - v —NWT data
£ 0y
E 0.2
& 0]
o
=
-0.1
-0.2 u ‘:":} S
o 5 R 20 25
Tima(s)

!Davidson, Giorgi and Ringwood, Numerical wave tank identifcation of nonlinear discrete time
hydrodynamic models, 1st RENEW Conference, 2014
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Input force
Small amplitude verification against linear models

Sinusoidal input PTO force : Amplitude 240N )
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!Davidson, Giorgi and Ringwood, Numerical wave tank identifcation of nonlinear discrete time
hydrodynamic models, 1st RENEW Conference, 2014
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Input Waves

Experinent without the body to
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2Davidson, Giorgi and Ringwood, Identification of wave energy device models from numerical
wave tank data - Part 1: Numerical wave tank identification tests, |IEEE Transactions on
Sustainable Energy, 2016
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Input Waves

NWT Setup
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Figure 3, Schematic of the numerical wave tank: Side view (a) and top view (b)

!Windt, Faedo, Pena-Snachez, Davidson, Ferri and Ringwood, Validation of a CFD-Based
Numerical Wave Tank Model of the 1/20th Scale Wavestar Wave Energy Converter, Fluids, 2020
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Input Waves

Numerical Wave Makers
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1Windt, Davidson, Schmitt and Ringwood, On the Assessment of Numerical Wave Makers in
CFD Simulations, Journal of Marine Science and Engineering, 2019
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Input Waves

Domain Decomposition

NLPF Top view

WEC

Side view

2Davidson and Costello, Efficient nonlinear hydrodynamic models for wave energy converter
design - A scoping study, Journal of Marine Science and Engineering (Special Issue " Nonlinear
Numerical Modelling of Wave Energy Converters"), 2019
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Input Waves

Wavestar Validation

e

1Windt, Davidson, Ransley, Greaves, Jakobsen, Kramer and Ringwood, Validation of a
CFD-based numerical wave tank model for the power production assessment of the wavestar ocean
wave energy converter, Renewable Energy, 2020

Numerical Wave Tank testing for Marine Renewable Energy Devices



Input Waves

Wavestar Validation

1Windt, Davidson, Ransley, Greaves, Jakobsen, Kramer and Ringwood, Validation of a
CFD-based numerical wave tank model for the power production assessment of the wavestar ocean
wave energy converter, Renewable Energy, 2020
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NWT verification and validation
Validation

What are some of the challenges/limitations in validating against physical wave
tank data?
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NWT verification and validation

Validation - Reflections

1Windt, Davidson, Ransley, Greaves, Jakobsen, Kramer and Ringwood, Validation of a
CFD-based numerical wave tank model for the power production assessment of the wavestar ocean
wave energy converter, Renewable Energy, 2020
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NWT verification and validation

Validation - Signal to Noise Ratio

) Proossigne gangs 10

1Windt, Davidson, Ransley, Greaves, Jakobsen, Kramer and Ringwood, Validation of a
CFD-based numerical wave tank model for the power production assessment of the wavestar ocean
wave energy converter, Renewable Energy, 2020
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NWT verification and validation

Validation - Signal to Noise Ratio
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1Windt, Davidson, Ransley, Greaves, Jakobsen, Kramer and Ringwood, Validation of a
CFD-based numerical wave tank model for the power production assessment of the wavestar ocean
wave energy converter, Renewable Energy, 2020
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Input Waves

Pressure measurements
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1Windt, Davidson, Ransley, Greaves, Jakobsen, Kramer and Ringwood, Validation of a
CFD-based numerical wave tank model for the power production assessment of the wavestar ocean
wave energy converter, Renewable Energy, 2020
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Input Waves

Flow visualisation
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1Windt, Davidson and Ringwood, Numerical analysis of the hydrodynamic scaling effects for
the Wavestar wave energy converter, Journal of Fluids and Structures, 2021
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Moorings
Coupling with NWT

Fre-ssure over instantaneous
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Mooring [*€—“— Newton’s law of motion for
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Mooring

Simple modelling
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Mooring

Simple modelling
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Mooring
Example

!Barajas, Lara, Davidson and Romano, Porous medium-based PTO damping and overset mesh
motion: A combined approach for effective OpenFOAM simulations of floating OWCs, Applied
Ocean Research, 2024
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Mooring

Example

!Barajas, Lara, Davidson and Romano, Porous medium-based PTO damping and overset mesh
motion: A combined approach for effective OpenFOAM simulations of floating OWCs, Applied
Ocean Research, 2024
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Currents

Example
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Currents

Example
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!Barajas, Lara, Davidson and Romano, Porous medium-based PTO damping and overset mesh
motion: A combined approach for effective OpenFOAM simulations of floating OWCs, Applied
Ocean Research, 2024
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Currents
Floating Tidal Turbine

!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Wind

Floating Wind Turbine
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Wind

Floating Wind Turbine
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!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025

Devices
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Floating Wind Turbine

NWT Implementation

6

c
o
2
©
—
(]
c
()
(o))
el
£
=
m
c 1 Two-phase fluid solver
o C =
= K]

- B
g O 2
g 8 2
o QW E %
g9 L ] 9
g > S &

e dees

5 2 + =
O o
m o

!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

Rotor Modelling???

!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

Rotor Applications
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Floating Wind Turbine

Actuator Disk Model - Weighted Body Implementation

Zoomed side view

Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

Actuator Disk Model - Weighted Body Implementation

Easily adjust rotor characteristics Multiple Rotors

S

Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

lllustrative Example

(a) Case 1 (b) Case 2

i

!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

lllustrative Example - Case 1

(a) 1 m/s — : —I

(b) 4 m/s

(c) 8 m/s

!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

lllustrative Example - Case 1
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!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for

Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

lllustrative Example - Case 2

(a) -2N [— —

(b) -8N

(c) -25N

!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

lllustrative Example - Case 2
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!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

lllustrative Example - Comparison
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Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Floating Wind Turbine

lllustrative Example - Hub Height

(c) 4m

!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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Turbin

lllustrative Example - Rotor Radius

(a) 0.3m (b) 0.5m

(f) 0.8m

== (d) 0.3m

!Davidson, Barajas and Lara, Turbines and Thrusters: A Versatile OpenFOAM Framework for
Modeling Aerial Rotors on Floating Bodies, In preparation, 2025
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NWT Experiments

Extreme/Survival Conditions
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NWT Experiments

Extreme/Survival Conditions

Why is a NWT a good tool for Extreme/Survival Condition experiments?
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NWT Experiments

Extreme Conditions - Survival

=0.0s

=4.0 5

=5.0s

2Chen et al, Numerical modelling of a point-absorbing wave energy converter in irregular and
extreme waves, Applied Ocean Research, 2017
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NWT Experiments

Extreme Conditions/Survival

2Madhi and Yeung, On survivability of asymmetric wave-energy converters in extreme waves,
Renewable Energy, 2018
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Machine Learnin
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Machine Learning
Surrogate Models

Input/output
data

¥

Parametric

Identification
model structure

algorithm

¥

&

System identification

‘

Model

System
System |—rent

Input Identification

| @lgorithm
ey Jteset [

output

Parameters

IRingwood, Davidson and Giorgi, Identifying models using recorded data, Numerical Modelling
of Wave Energy Converters : State-of-the-art for single devices and arrays, Academic Press, 2016
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Machine Learning
Forces Or Motions??7?
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Machine Learning
Forces Or Motions??7?
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Machine Learning

Surrogate Models
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2Davidson and Costello, Efficient nonlinear hydrodynamic models for wave energy converter
design - A scoping study, Journal of Marine Science and Engineering (Special Issue " Nonlinear
Numerical Modelling of Wave Energy Converters"), 2019
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Machine Learning

System lIdentification - Example: Nonlinear Restoring force
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!Davidson, Giorgi and Ringwood, Numerical wave tank identifcation of nonlinear discrete time
hydrodynamic models, 1st RENEW Conference, 2014
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Machine Learning

System lIdentification - Example: Nonlinear Restoring force
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!Davidson, Giorgi and Ringwood, Numerical wave tank identifcation of nonlinear discrete time
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Machine Learning
System lIdentification - Example: Nonlinear Restoring force
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Machine Learning

System lIdentification - Example: Nonlinear Restoring force
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Machine Learning

System lIdentification - Example: Nonlinear Restoring force
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Machine Learning

System lIdentification - Example: Nonlinear Restoring force
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Machine Learning

System l|dentification - Example: Nonlinear Restoring force - 2 DoF

0 degrees 25 degrees 50 degrees
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Machine Learning

System l|dentification - Example: Nonlinear Restoring force - 2 DoF
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NWT Experiments

System lIdentification - Example: Black-box models

Nonlinear Autoregressive with eXogenous terms (NARX)
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NWT Experiments

System lIdentification - Example: Black-box models

Nonlinear Autoregressive with eXogenous terms (NARX)
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NWT Experiments

System lIdentification - Example: Black-box models

Artificial Neural Network (ANN)
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NWT Experiments

System lIdentification - Example: Black-box models

Artificial Neural Network (ANN)
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NWT Experiments

System lIdentification - Example: Black-box models
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NWT Experiments

System lIdentification - Example: Online Identification

Adaptive control
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!Davidson, Genest and Ringwood, Adaptive control of a wave energy converter simulated in a
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NWT Experiments

System lIdentification - Example: Online Identification
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NWT Experiments

System lIdentification - Example: Online Identification

Basis functions
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NWT Experiments

System lIdentification - Example: Online Identification
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NWT Experiments

System lIdentification - Example: Online Identification
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NWT Experiments

System lIdentification - Example: Online Identification
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NWT Experiments

System lIdentification - Example: Online Identification
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NWT Experiments

System lIdentification - Example: Online Identification

Parameter adaptation
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NWT Experiments

System lIdentification - Example: Online Identification

Why does the magnitude of the parameters in the M matrix decrease due to
the online identification?
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NWT Experiments

System lIdentification - Example: Online Identification

Results
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NWT Experiments

System lIdentification - Example: Online Identification

Question
Why does the trajectory in the adaptive control simulation have a smaller
amplitude than in the constant control model simulation?
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NWT Experiments

System lIdentification - Example: Online Identification

PTO Energy Flow
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Conclusions

Conclusions

o Extensive design iteration and optimisation at low TRL levels is vital for
the successful development of a MRE device

o NWTs are a valuable tool in the successful development of a MRE device

o A range of methods are available with a trade-off between accuracy and
computational expense

o Modern day computing power allows the use of RANS CFD for an
increasing variety of applications

o Different methods have strengths/advantages and the best choice may be
case dependent, or could involve a combination of methods

o Growing Opensource communities are reducing barriers to NWT
development
o When analysing a MRE in a NWT it is important to consider the entire

system, with the complete energy flow from input resource to output
power.

o A chain is only as strong as its weakest link
o Using low fidelity models for subsystems may negate the gains in accuracy
acheived by computationally expensive models in other parts of the system
o NWTs offer significant advantages in the range of experiments and
measurements available
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