Title:

NE6003 Wind Energy Engineering

<u>Credit value:</u>

5 ECTS

Mandatory/Optional:

Optional

Semester:

<u>1</u> • • • •

Lecturer/s:

Paul Leahy

<u>University:</u>

University College Cork

Department: School of Engineering

Rationale:

This module aims to introduce students to wind energy theory and technology, resource assessment and wind farm site development.

Objectives:

On successful completion of this module, students should be able to:

- Outline the origin of global, geostrophic and surface winds
- Explain the impact of surface roughness and orography on wind speed profiles
- Calculate wind speed at a given height using the log law and power law
- Derive the Betz equation for wind power extraction using an idealized wind turbine
- Discuss different approaches to wind power forecasting and the relative benefits and limitations of each
- Apply aerodynamic theory to analyse passive and active wind turbine stall control operations
- Prepare a site visit report for a wind farm

• Model wind farm energy production using appropriate wind farm software tools.

<u>Skills:</u> (according to the list of skills provided)

Subject skills	REM Master Skills						
	L2.1	L2.2	L2.3	L2.4	L2.5	L2.6	L2.7
L3.1. Understand how wind is generated and	Х						
influenced by global, regional and local factors							
and quantify the wind energy resource							
L3.2. Analyse the performance of a complete wind	Х	X	X				Х
farm design, including turbines and their							
subsystems (e.g. rotors, control systems), wakes,							
balance of plant and grid connection							
L3.3. Explain environmental and social impacts of		X			X	X	X
wind energy and the wind farm development,							
operation and decommissioning phases							
L3.4 Read wind energy forecasts and extract and	Х		Х				
apply the necessary information to make							
operational decisions							

Teaching and learning methods:

The teaching method is based on a series of lectures where the lecturer explains the main concepts through power point presentations and worked out examples on the board. The students are also presented with a variety of issues of practical nature during the lectures. The module also includes a site visit to an operational wind farm. Students must write a written report on the site visit. There is also a group design assignment – students work in small groups to develop a wind farm layout, estimate energy yield, apply measure-correlate-predict to estimate long term variability, and consider environmental constraints. The design assignment is supported by tutorial sessions.

Allocation of student time:

	Attendance (classroom, lab,)	Nonattendance(lecture preparation, self study)
Lectures	24 hours	10 hours
Tutorials	3 hours	0 hours
Assignment	10 hours	20 hours
Private study		41 hours

Assessment:

Site visit report, design report and final written exam test students' achievements of the learning outcomes.

Assessment Matrix:

Subject	Assessment method					
skills	Exam	Class test	Coursework	Report	•••	•••
All	80%	-	10%	10%		

Programm	<u>e:</u>
Lesson 1	Introduction to wind energy industry, historical development and current status
	Distribution (2 h theory)
Lesson 2	Wind characteristics and resources. Vertical Wind Profile.
	Distribution (2 h theory)
Lesson 3	Terrain Effects. Available Wind Power.
	Distribution (2 h theory)
Lesson 4	Aerodynamics. Rotors. Blade Element Momentum Method. Wakes.
	Distribution (2 h theory)
Lesson 5	Wind Turbine Systems and Control.

	Distribution (2 h theory)
Lesson 6	Wind Measurement and Resource Assessment
	2 h
Lesson 7	Electrical technology for wind turbine generators. Grid Integration.
	3h
Lesson 8	Noise impacts
	<i>1h</i>
Lesson 9	Wind Farm Design I : Weibull Statistics, Measure-Correlate-Predict & Energy Yield
	2h
Lesson	Wind Farm Design II: Layouts, Array Effects & Uncertainty
10	3h
Lesson	Operations and Maintenance; Decommissioning
11	1h
Lesson	Wind Forecasting
12	2h

Resources:

A classroom, equipped with a blackboard and audio-visual resources (laptop/computer and Internet connection + projector), for the lectures.

For design tutorial: a room suitable for group work (groups of 4-5).

Bibliography:

Wind Energy Explained – theory, design and application by J.F. Manwell, J.G. McGowan and A.L. Rogers. Published by Wiley.

Burton et al, 2012, Wind Energy handbook, 2nd Ed., Wiley

Wind Power Plants – fundamentals, design, construction and operation by Robert Gasch and Jochen Twele. Published by Solarpraxis AG, Germany in association with James and James Ltd.

Wind Energy – The Facts [online] <u>https://www.wind-energy-the-facts.org/</u>

Further comments: