REM master basic syllabus

11	124	ıT.	_	_
	ш	ЛΚ	н	-

NE6005 Ocean Energy

Credit value:

5 ECTS

Mandatory/Optional:

Mandatory

Semester:

1

Lecturer/s:

Gregorio Iglesias

University:

University College Cork

Department:

School of Engineering

Rationale:

This module aims to introduce students to wave and tidal energy.

Objectives:

On successful completion of this module, students should be able to:

- Understand wave mechanics in the context of linear wave theory
- Apply mathematical tools to calculate wave propagation
- Understand wave spectra and ocean waves
- Discuss the hydrodynamics of a coastal area
- Characterise the wave and tidal resource of an area
- Discuss the main technologies in wave and tidal energy
- Calculate the power harnessed by a wave energy converter or tidal stream turbine
- Discuss the impacts of ocean energy

Skills: (according to the list of skills provided)

Subject skills		REM Master Skills					
	L2.1	L2.2	L2.3	L2.4	L2.5	L2.6	L2.7
L3.1. Understand wave mechanics & ocean waves	X			X			
L3.2. Use mathematical tools to calculate	X	X	X	X			X
propagation							
L3.3. Explain environmental and social impacts of		X			X	X	X
ocean energy							
L3.4 Characterise wave and tidal resources			X				
L3.5 Assess technological options for different			X		X		X
deployment sites							

Teaching and learning methods:

The teaching method is based on a series of lectures where the lecturer explains the main concepts through power point presentations and worked out examples on the board. The students are also presented with a variety of issues of practical nature during the lectures. The module also includes a visit to the LIR/NOTF laboratory at Ringaskiddy, with a laboratory practical included in the visit.

Allocation of student time:

	Attendance (classroom, lab,)	Non attendance (lecture preparation, self study)
Lectures	24 hours	10 hours
Laboratory practical	3 hours	3 hours
Private study		41 hours

Assessment:

The report of the laboratory practical and the final written exam test students' achievements of the learning outcomes.

Assessment Matrix:

Subject	Assessment method					
skills	Exam	Class test	Coursework	Lab Report	•••	•••
All	80%	-	-	20%		

Programme:

Lesson 1	Introduction to ocean energy		
	3h		
Lesson 2	Fundamentals of wave mechanics		
	3h		
Lesson 3	Nearshore wave propagation		
	3h		
Lesson 4	Ocean waves		
	3h		
Lesson 5	Wave energy technologies		
	3h		
Lesson 6	Fundamentals of tidal hydrodynamics		
	3h		
Lesson 7	Tidal energy technologies		
	3h		
Lesson 8	Ocean energy impacts		
	3h		

Resources:

A classroom, equipped with a blackboard and audio-visual resources (laptop/computer and Internet connection + projector), for the lectures.

LIR/NOTF laboratory, Ringaskiddy.

Bibliography:

Greaves and Iglesias (2018) Wave and Tidal Energy Wiley

McCormick, M.E. (1981, 2007) Ocean Wave Energy Conversion Dover Pub.

Cruz, J. (2008). Ocean Wave Energy Springer