REM master basic syllabus

T-1	
Titl	Δ.
	•

NE6015 Data Analytics for Engineering

Credit value:

5 ECTS

Mandatory/Optional:

Optional

Semester:

1

Lecturer/s:

Dominic O' Sullivan, Marguerite Nyhan, Ken Bruton

University:

University College Cork

Department:

School of Engineering

Rationale:

This module focuses on teaching the practical programming skills required for analysis of engineering data sets.

Objectives:

On successful completion of this module, students should be able to:

- Analyse data in Engineering contexts.
- *Manipulate and transform data.*
- Produce visualisations of data.
- Formulate data models.
- Deploy data models.
- Evaluate machine learning algorithms

Skills: (according to the list of skills provided)

Subject skills	REM Master Skills						
	L2.1	L2.2	L2.3	L2.4	L2.5	L2.6	L2.7
L3.1. Modelling of engineering scenarios to	X	X			X	X	X
understand context, data flows/sources etc. Data							
integration.							
L3.2. Data processing and cleaning of integrated	X		X				
data							
L3.3. Data exploration, visualisation and	X	X					
comprehension of dataset (e.g. data distribution,							
summary statistics etc.).							
L3.4 Building, testing and deploying predictive	X		X		X	X	
models							

Teaching and learning methods:

The teaching method is based on a series of lectures where the lecturer explains the main concepts through power point presentations and worked out examples on the board. The students are also presented with a variety of issues of practical nature during the lectures. The design assignment is will be supported in the lab and it is this assignment by which students are fully assessed.

Allocation of student time:

	Attendance (classroom, lab,)	Non attendance (lecture preparation, self study)
Lectures	24 hours	12 hours
Tutorials	0 hours	0 hours
Assignment	12 hours	24 hours
Private study		

Assessment:

Site visit report, design report and final written exam test students' achievements of the learning outcomes.

Assessment Matrix:

Subject	oject Assessment method					
skills	Exam	Class test	Coursework	Report	•••	•••
All		-	100%			

Programme:

Lesson 1	Introduction and Data Integration
	Distribution (2 h theory)
Lesson 2	Probability and Statistics
	Distribution (2 h theory)
Lesson 3	Data processing and cleaning.
	Distribution (2 h theory)
Lesson 4	Data exploration and visualisation.
	Distribution (2 h theory)
Lesson 5	Programming Fundamentals
	Distribution (2 h theory)
Lesson 6	Data Visualisation

	Distribution (2 h theory)
Lesson 7	Database Management
	Distribution (2 h theory)
Lesson 8	Model Development
	Distribution (2 h theory)
Lesson 9	Model Deployment
	Distribution (2 h theory)
Lesson	Model Testing
10	
	Distribution (2 h theory)
Lesson	Engineering Case Study
11	
	Distribution (2 h theory)
Lesson	Engineering Case Study
12	
	Distribution (2 h theory)
Dagarraga	

Resources:

A classroom, equipped with a blackboard and audio-visual resources (laptop/computer and Internet connection + projector), for the lectures.

For assignment: access to computer lab

Bibliography:

H	'nr	th	er	con	ım	en	te•
т.	uı	ш	u	CUII		ш	w.