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What are the conditions for hydrodynamic similarity?
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Dimensions versus Units

The dimension of a physical quantity is
independent of the units of measure

The physical quantities are measured in
units

Fundamental dimensions

Dimension Symbol Unit SI Name

Mass M kg kilogram
Length L m metre
Time T s second
Temperature Θ K Kelvin
Electrical current I A Ampere
Amount of substance N mol mole
Luminous intensity J cd candela
Electric charge e C Coulomb
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Dimensions versus Units

Notation: square brackets around some physical quantity q to denote its
dimension

Example: Dimension of velocity [v ] = LT−1

Same physical quantities are dimensionless, for example, angles

In the SI system, angles, θ, are the ratio between the arc length s and the radius r

θ =
s

r

As such

[θ] = 1
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The concept of similarity

In dimensional analysis

Prototype - real scale or real physical system

model - system at laboratory scale

Usually the model is smaller than the prototype

The model does need to be smaller

Model and prototype can have similar dimensions and diferent velocities, fluid
properties, etc
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The concept of similarity

Two experiments are similar if the physical phenomena are equal for both

Two system operating in different conditions are described by the same set of
equations, i.e., they are similar, if exists a scale ratio between certain physical
quantities of both systems in all domain

geometric
similarity

kinematic
similarity velocities

physical 
dimensions

accelerations 
and forces

dynamic
similarity

complete
similarity

Complete similarity only exists in simple engineering problems
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Buckingham’s or Π theorem

In 1914 Buckingham stated the following theorem

A dimensionally homogeneous equation

x1 = f (x2, . . . , xn)

can be reduced to a relationship of m = n − p dimensionless groups
called Πs,

Π1 = ϕ (Π2, . . . ,Πm)

where p is the number of dimensions of the sub-set of p primitive
variables {x1, . . . ,xp}
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Buckingham’s or Π theorem

We can define dimensionless groups Πj provided that

The set of Πs has m dimensionless groups {Π1, . . . ,Πm}

The set of Πs includes all primitive variables {x1, . . . ,xn}

The Π groups are independent

For example, we cannot define

Π1 =
x1
x2

and

Π2 =
x2
x1

since

Π2 = Π−1
1
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Buckingham’s or Π theorem
Example 1

Flow around a bi-dimensional circular cylinder

Drag, D, is a function of: velocity U, diameter, d , ϵ relative roughness, and fluid
properties, density, ρ, and viscosity, µ

D = f (U,d ,ϵ,ρ,µ) = 0

Dimensions

[D] =
ML

T 2
[U] =

L

T
[d ] = L

[ϵ] = L [ρ] =
M

L3
[µ] =

M

LT

Summarizing

n = 6 variables

p = 3 dimensions (M,L,T)

}
⇒ m = 6−3 = 2 dimensionless groups {Π1,Π2}
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Buckingham’s or Π theorem
Example 1

Let us select three primitives variables involving the three dimensions LMT

For example: U, D and ρ

[U] = LT−1

[d ] = L

[ρ] = ML−3

Define two dimensionless groups using the remaining primitive variables

Π1 =
D

ρU2d2
⇒ CD =

D
1
2
ρU2d2

→ Drag coefficient

Π2 =
µ

ρUd
⇒ Re =

ρUd

µ
→ Reynolds number

Π3 =
ϵ

d
⇒ Relative roughness
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Buckingham’s or Π theorem
Example 1

The Π theorem does not allow us to know function ϕ but allows us to understand
the relevant variables for the problem

Instead of performing experimental for all combinations U, d , ρ and µ, we just
need a small set of experiments to determine CD as a function of Re
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What are the conditions for hydrodynamic similarity?
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What are the conditions for hydrodynamic similarity?
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Testing conditions model/prototype

Independent variables:

t: time

f : wave frequency

H: wave height

h: water depth

d : characteristic length of the device

m: mass of device

I : inertia of device

xCM: centre of mass

g : gravity acceleration

ρ: water density

µ: water viscosity

Dependent variables:

x : displacement of device

ẋ : velocity of device

ẍ : acceleration of device

θ̇: angular speed of device

θ̈: angular acceleration of device

p: pressure on device

F : force on device

T : torque on device

P: power on device

{
t, x , ẋ , ẍ , θ̇, θ̈, p,F ,T ,P

}
= function

(
f ,H,h,d ,m,I , xCM, g , ρ, µ

)
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Buckingham’s Π theorem

The number of independent variables reduces by the number of fundamental
dimensions

The number of fundamental dimensions is 3 for this problem [LMT]

Select 3 primary variables (choice not unique!)

Common choice

diameter the device [ d ] = L

acceleration of gravity [ g ] = LT−2

water density [ ρ ] = ML−3

Alternative choice

water depth [ h ] = L

wave frequency [ f ] = T−1

Water density [ ρ ] = ML−3
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Buckingham’s Π theorem with d , g and ρ as primary variables

Dimensionless independent variables:

t∗ = t
√

g/d

f ∗ = f
√

d/g

H∗ = H/d

h∗ = h/d

m∗ = m/(ρd3)

I ∗ = I/(ρd5)

x∗
CM = xCM/d

Re =
ρg 1/2d3/2

µ
: Reynolds number

The number of independent variables
was reduced by 3

Dimensionless dependent variables:

x∗ = x/d

Fr = ẋ∗ = ẋ/
√
gd : Froude number

ẍ∗ = ẍ/g

θ̇∗ = θ̇
√

d/g

θ̈∗ = θ̈ d/g

p∗ = p/(ρgd)

F ∗ = F/(ρgd3)

T ∗ = T/(ρgd4)

P∗ = P/(ρg 3/2d7/2)

{
x∗,Fr, ẍ∗, θ̇∗, θ̈∗, p∗,F ∗,T ∗,P∗

}
= function

(
t∗, f ∗,H∗, h∗,m∗, I ∗, y∗

CM,Re
)

REM-Plus / JCC Henriques / Simplifying complexity using dimensional analysis / June 2024 17/48



Buckingham’s Π theorem with d , g and ρ as primary variables

To have the same response, the dimensionless numbers of the prototype scale
and the model scale must be the same{

x∗,Fr, ẍ∗, θ∗, θ̇∗, θ̈∗, p∗,F ∗,T ∗,P∗
}
= function

(
t∗, f ∗,H∗, h∗,m∗, I ∗, y∗

CM,Re
)

All independent dimensionless variables scale with the geometry except

t∗, Fr and Re

t∗ and Fr are both the time scale

The Re is ratio between the inertia forces and the viscous forces

The effect of the Reynolds number can be understood through the
Navier-Stokes equations
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How to easily obtain Froude scaling factors

Units appearing in the Froude scale M, L and T

In the International System of Units (SI)

[M] = kg

[L] = m

[T ] = s

Chose 3 constants that combine the 3 units

Acceleration of gravity: g ⇒ [M/T 2] = m/s2

Characteristic length: d ⇒ [L] = m

Water density: ρw ⇒ [M/L3] = kg/m3

⇒ {M, L, T}

Example 1: Dimensionless time

t∗ = t

√
g

d

Example 2: Dimensionless velocity

u∗ =
u√
gd

REM-Plus / JCC Henriques / Simplifying complexity using dimensional analysis / June 2024 19/48



Froude scaling factors used for scaled model testing

Property Dimensions Scaling factor
Length L ε
Mass M (ρp/ρm) ε3

Time T ε1/2

Wave height L ε
Water depth L ε
Displacement L ε

Velocity LT−1 ε1/2

Acceleration LT−2 1
Wave period T ε1/2

Wave frequency T−1 ε−1/2

Moment of inertia ML2 (ρp/ρm) ε5

Moment of area L4 ε4

Force MLT−2 (ρp/ρm) ε3

Moment ML2T−2 (ρp/ρm) ε4

Pressure ML−1T−2 (ρp/ρm) ε
Power ML2T−3 (ρp/ρm) ε7/2

Angle − 1

ε = dm/dp (model/prototype scale)

All scales of the physical quantities can be obtained from the basic M, L and T

Pressure: ML−1T−2 ⇒
[
(ρp/ρm)ε3

]
[ ε ]−1

[
ε1/2

]−2

⇒ (ρp/ρm) ε
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What are the conditions for turbine testing similarity?
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Dimensional analysis applied to turbines

Determine the performance of a turbine independently from the size and fluid
properties (assuming incompressible flow)

mass flow rate: ṁ = f1 (∆p,Ω, d , ρ, µ, ϵ)

Torque: T = f2 (∆p,Ω, d , ρ, µ, ϵ)

Power: P = f3 (∆p,Ω, d , ρ, µ, ϵ)

Efficiency: η = f4 (∆p,Ω, d , ρ, µ, ϵ)

Buckingham’s theorem of dimensional analysis allows us to reduce the number of
independent variables from six to three, the number of fundamental dimensions
[LMT]

Let us choose three variables such that all fundamental dimensions [LMT] appear:
[ρ] = ML−3, [d ] = L, [Ω] = T−1
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Dimensional analysis applied to turbines

Using a combination of ρ, d and Ω we can the get dimensionaless values

ṁ

ρΩd3
= f1

(
∆p

ρΩ2d2
,
ρΩd2

µ
,
ϵ

d

)
T

ρΩ2d5
= f2

(
∆p

ρΩ2d2
,
ρΩd2

µ
,
ϵ

d

)
P

ρΩ3d5
= f3

(
∆p

ρΩ2d2
,
ρΩd2

µ
,
ϵ

d

)
η = f4

(
∆p

ρΩ2d2
,
ρΩd2

µ
,
ϵ

d

)

Re =
ρΩd2

µ

Ψ =
∆p

ρΩ2d2

Φ = fΨ
(
Ψ,Re,

ϵ

d

)
Π = fΠ

(
Ψ,Re,

ϵ

d

)
η = fη

(
Ψ,Re,

ϵ

d

)

We reduce the number of variables of the original problem from 6 to 3 ([LMT])

The turbine efficiency η is already dimensionless

Torque and Power imply the same dimensionless number Π

NOTE: for turbomachines we don’t use Froude scale ⇒ different physics
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Dimensional analysis applied to turbines

If we characterize the turbine under fully developed turbulence conditions and
considering the same relative roughness

Φ = fΨ(Ψ)

Π = fΠ(Ψ)

η = fη(Ψ)

Typically the curves are independent of the Reynolds number for Re > 106 for

small Mach numbers Ma =
Ωd

2a
< 0.3 where a is the speed of sound
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Dimensional analysis applied to turbines
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The operating range of a Wells turb. is much smaller than a biradial turb.
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How to scale a turbine

Pressure on the OWC scales with Froude (neglecting water density differences)

p∗
p = p∗

m ⇒ ∆pp
ρpgLp

=
∆pm
ρmgLm

⇒ ∆pm
∆pp

=
Lm

Lp
= ε (1)

where L is the characteristic length of the buoy

Flow rate on the OWC scales with Froude

Q∗
p = Q∗

m ⇒ Qp

g 0.5L2.5
p

=
Qm

g 0.5L2.5
m

⇒ Qm

Qp
=

(
Lm

Lp

)2.5

= ε2.5 (2)

If the model and prototype turbines operate at the same conditions

Ψ =
∆pm

ρairΩ2
md2

m
=

∆pp
ρairΩ2

pd2
p

(3)

Φ =
Qm

Ωmd3
m

=
Qp

Ωpd3
p

(4)

Applying (1) and (2) we get on (3) and (4)

dm
dp

=

(
Lm

Lp

)
= ε (5)

Ωm

Ωp
=

(
Lp

Lm

)0.5

= ε−0.5 (6)
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How to scale a turbine

Assuming a test scale of 1:100

Turbine with dp = 1.2m at prototype scale (1:1)

dm = dp

(
1

100

)
= 0.012m ⇒ too small to be manufactured

For a typical rotational speed of 750 rpm at prototype scale

Ωm = Ωp(100)
0.5 = 7500 rpm

Reynolds number of the turbine rotor at prototype scale

Rep =
U tip

p Rp

ν
=

ΩpR
2
p

ν
= 2× 106

Reynolds number of the turbine rotor at model scale (1/100)

Rem =
U tip

m Rm

ν
=

ΩmR
2
m

ν
= 1.8× 104 ⇒ too small to be meaningful

Replace the turbine with a calibrated orifice/textile
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Simulation a quadratic turbine (axial impulse and biradial turbines)
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Simulation of a quadratic turbine (axial impulse and biradial turbines)

For a quadratic turbine

Φ = κ
√
Ψ ⇒ Qm

Ωmd3
m

= κ

√
∆pm

ρairΩ2
md2

m
⇒ Qm = κd2

m

√
∆pm
ρair

⇒ Qm = Kt

√
∆pm
ρair

For an orifice (Qm = uoAo)

Cd =
∆pm

1
2
ρairu2

o

⇒ Qm = Ao

√
2

Cd

√
∆pm
ρair

⇒ Qm = Ko

√
∆pm
ρair

Typically Cd = 0.66

To simulate the turbine

Ko = Kt

Since Ao = πd2
o/4, we get

do = C 0.25
d 20.75

(κ
π

)0.5
dm

The turbine diameter dm scales using (5)
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Navier-Stokes equations and Reynolds number effects

Navier-Stokes equations for laminar two-dimensional unsteady-flow

Continuity equation (conservation of mass)

∇ · u = 0

Conservation of momentum

ρ
∂u

∂t
+ ρ u · ∇u = −∇p + µ∇2u− ρg ez
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Navier-Stokes equations and Reynolds number effects

To scale the Navier-Stokes equations we need to find characteristic length, time,
velocity and pressure of the system

Possible choices (not unique!)

device diameter [ d ] = L

(phase) velocity [U ] = LT−1

density [ ρ ] = ML−3
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Navier-Stokes equations and Reynolds number effects

Since

t∗ =
U

d
t and x∗ =

1

d
x,

the scaled time derivative and spatial derivatives are given by

∂

∂t
=

U

d

∂

∂

(
U

d
t

) =
U

d

∂

∂t∗

∂

∂x
=

1

d

∂

∂
( x
d

) =
1

d

∂

∂x∗ ⇒ ∇ =
1

d
∇∗,

The scaled continuity equation reads

∇∗ · u∗ = 0 (7)

where

u = U u∗
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Navier-Stokes equations and Reynolds number effects

To scale the momentum balance we need to define

p = ρU2 p∗

Scaled conservation of momentum

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇∗p∗ +

1

Re
∇∗2u∗ − 1

Fr2
ez (8)

Re is the Reynolds number

Re =
ρUd

µ
(9)

Fr is the Froude number

Fr =
U√
gd

(10)
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Navier-Stokes equations and Reynolds number effects

Scaled conservation of momentum

∂u∗

∂t∗
+ u∗ · ∇u∗︸ ︷︷ ︸

Fi=inertia terms

= −∇∗p∗︸ ︷︷ ︸
Fp=pressure term

+
1

Re
∇∗2u∗︸ ︷︷ ︸

Fv=viscous terms

− 1

Fr2
ez︸ ︷︷ ︸

Fp=gravity term

(11)

Interpretation of the dimensionless numbers

Fi

Fg
=

∂u∗

∂t∗
+ u∗ · ∇u∗

1

Fr2
ez

∼ Fr2 (12)

Fi

Fv
=

∂u∗

∂t∗
+ u∗ · ∇u∗

1

Re
∇∗2u∗

∼ Re (13)
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Navier-Stokes equations and Reynolds number effects

Testing in similarity conditions implies that the Froude numbers of model
(small-scale) and prototype (full-scale) must be the same

Frm
Frp

= 1 ⇔
(

Um√
gdm

)(√
gdp

Up

)
= 1 ⇔ Um

Up
=

√
dm
dp

Reynolds number do not scale as Froude

Rem
Rep

=

(
Umdm
ν

)(
ν

Updp

)
=

Um

Up

dm
dp

=

√
dm
dp

dm
dp

< 1 ⇒ Rem < Rep

Can not scale both Fr and Re
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Navier-Stokes equations and Reynolds number effects

The effect of testing with different Reynolds number

Conservation of momentum

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇∗p∗ +

1

Re
∇∗2u∗︸ ︷︷ ︸

Not properly scaled

− 1

Fr2
ez

Since Rem < Rep

viscous effects are more important at model scale that at prototype scale

more damping ⇒ smaller motion amplitudes ⇒ smaller capture width

How the Reynolds number affects the response of a floating system excited
by the waves?

Why we perform decay tests?
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Mass-spring-damper system dynamics

Let us study the effect of the damping in the dynamics of floating bodies

Consider a the dynamics of a mass-spring-damper system

m
d2x

dt2
+ c

dx

dt
+ kx = F cos(ωt)

As such

x = f (t,m, c, k,F , ω)

where

x - displacement [L]

t - time [T ]

m - mass [M]

c - damping constant [M/T ]

k - spring stiffness
[
M/T 2

]
F - driving force modulus

[
ML/T 2

]
ω - driving force frequency [1/T ]
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Mass-spring-damper system dynamics

Selecting a set of primary variables with the 3 dimensions L,M,T , i.e.,

{m, k, F}

we get (see Buckingham Π theorem)

x∗ = f ∗(t∗, c∗, ω∗)

where

x∗ =
kx

F
- dimensionless displacement

t∗ = t

√
k

m
- dimensionless time

c∗ =
c√
km

- damping coefficient

ω∗ = ω

√
m

k
- dimensionless frequency

Hereinafter, the ∗ does not denote the complex conjugate
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Mass-spring-damper system dynamics

From the dimensionless time

t∗ = t

√
k

m
⇒ dt∗

dt
=

√
k

m

yields

d

dt
=

dt∗

dt

d

dt∗
=

√
k

m

d

dt∗

d2

dt2
=

(
dt∗

dt

)2
d2

dt∗2
=

k

m

d2

dt∗2

Dividing the ODE by F results

m

F

(
k

m

d2x

dt∗2

)
+

c

F

(√
k

m

dx

dt∗

)
+ x∗ = cos(ω∗t∗)

d2x∗

dt∗2
+ c∗

dx∗

dt∗
+ x∗ = cos(ω∗t∗) (14)
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Mass-spring-damper system dynamics

The frequency domain solution

x∗ = Xeiω
∗t∗

implies that

dx∗

dt∗
= iω∗X eiω

∗t∗ and
d2x∗

dt∗2
= −ω∗2X eiω

∗t∗

Replacing in (14) and dividing eiω
∗t∗ by we get(

1− ω∗2 + ic∗ω∗
)
X = 1

Defining

Reiθ
∗
= 1− ω∗2 + ic∗ω∗

results

X =
1

R
e−iθ∗
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Mass-spring-damper system dynamics

Using the properties of the complex modulus we found

|X | = 1

| (1− ω∗2) + ic∗ω∗| =
1

R

∠X = arg(X ) = −θ∗

 ⇒ x =
F

kR
ei
(
ω∗t∗−θ∗

)

where

R =

√
(1− ω∗2)2 + (c∗ω∗)2 and tan θ∗ =

c∗ω∗

1− ω∗2

Frequency at the maximum amplitude

ωpeak =

√
1− c∗2

2

The natural frequency ω0 is given by (c∗ = 0)

ω∗
0 = 1 ⇔ ω0

√
m

k
= 1 ⇔ ω0 =

√
k

m
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Mass-spring-damper system dynamics
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Mass-spring-damper system dynamics

Original system x depends on 6 variables: t, m, c, k, F and ω

Dimensionless system x∗ depends on 3 variables: t∗, c∗ and ω∗

The plot of the amplitude/phase response of the system depends only of two
variables c∗ and ω∗

Two systems with the same c∗ are similar

For the same c∗, the displacement is proportional to F

x =
F

kR
ei
(
ω∗t∗−θ∗

)
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Compressibility effects in an OWC air chamber

Mass balance in the air chamber control volume

dm

dt
=

d(ρV )

dt
= ρ̇V + ρV̇ = −ṁt

ṁt is the turbine mass flow rate (positive outward)

ρ̇

ρ
+

V̇

V
= − ṁt

ρV
(15)

Assuming an pressure/density evolution of the air the
chamber modelled as perfect gas

p + patm
ργ

= const (16)

where
k = 1, isotermic (T = const)

1 < k < 1.4, polytropic
k = 1.4, isentropic (lossless)
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Compressibility effects in an OWC air chamber

Taking the logarithm of (16) we get

log (p + patm)− k log (ρ) = const

resulting

ṗ

p + patm
− k

ρ̇

ρ
= 0 ⇒ ρ̇

ρ
=

ṗ

k (p + patm)

Replacing in (15) we get

ṗ

p + patm
= −k

(
V̇

V
+

ṁt

ρV

)
(17)

Eq. (17) show that we must use the absolute pressure values, p + patm

The instantaneous volume of the air chamber, V , can greatly affect the
pressure changes
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Compressibility effects in an OWC air chamber

To have similarity between the model scale, m, and the full scale, F , the ratio
between the LHS and the RHS of (17) must be equal for the two scales

ṗm
pm + patm,m

km

(
V̇m

Vm
+

ṁt,m

ρmVm

) =

ṗF
pF + patm,F

kF

(
V̇F

VF
+

ṁt,F

ρFVF

)
Typically p ≪ patm and considering the stiffer case where ṁt = 0, we may
approximate

ṗm
ṗF

=
km
kF

V̇m

V̇F

VF

Vm

Since V̇ = Aẋ we found that

Vm

VF
=

km
kF

Am

AF

ẋm
ẋF

ṗF
ṗm

(18)

where ẋ is the OWC free surface velocity
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Compressibility effects in an OWC air chamber

Using Froude scale, we get for each term of (18)

km
kF

=
1

kF
⇒ for small scales, say ε <

1

8
, we have isothermal flow km = 1

Am

AF
= ε2

ẋm
ẋF

= ε1/2

ṗF
ṗm

= δ−1ε−1/2

where δ = ρm/ρF is the density ratio and ε = Lm/Lp is the geometric scale

Replacing in (18)

Vm

VF
=

1

kF
δ−1ε2 (19)

So, the volume should not scale with ε3 as one may expect!
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Compressibility effects in an OWC air chamber

How to properly simulate the air compressibility

Not practical to apply for floating OWCs!
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