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Abstract

Circuit breakers are engineered to safely interrupt currents and isolate faulty sections
of the electrical power network and prevent damage caused by overcurrents or short
circuits under normal or fault conditions; hence, they contribute reliable operation of
the power system.
When a circuit breaker is triggered to open, an electric arc may form due to the high
voltage and current. We will discuss fundamental physics from an applied
perspective. We discuss the Cassie-Mayr model as a zero-dimensional representation
of arcs. We then consider 3D-simulations of electric arcs which requires a coupled
solution of compressible fluid dynamics, electromagnetism, radiative heat transfer
and advanced physics modeling. Subsequently, we build on these fundamental
aspects and discuss the working principle of High Voltage Circuit Breakers in AC and
DC power networks. We conclude with aspects of Low Voltage Circuit Breakers, and
their use in Electric Vehicles.
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Learning objectives:
You are able to:

▶ sketch and explain the layout of an electric power grid.

▶ state grid components of a power substation.

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Electric Power Grid

▶ Extra-high voltage (220 kV, 380 kV)

▶ High voltage (36 kV - 150 kV)

▶ Medium voltage (1 kV - 36 kV)

▶ Low voltage (< 1 kV)

Source: https://www.swissgrid.ch/en/home/operation/power-grid/grid-levels.html
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European Transmission Grid

https://www.entsoe.eu/data/map/

▶ red: 380 kV Transmission line

▶ green: 220 kV Transmission line

▶ purple: DC line

CH:

▶ 4 nuclear plants, hydro power (pumped storage & river-flow)

▶ EU-Swiss Institutional Framework Agreement, Electricity agreement

see also https://nfp-energie.ch/en/projects/1024/
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Figure: Offshore wind park connected to power grid.

https://www.energy.gov/sites/default/files/2023-09/

Atlantic-Offshore-Wind-Transmission-Plan-Report_September-2023.pdf, Fig. 6.
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Figure: Substation components. 1 - transformer, 3 - disconnecting switch, 4 - circuit breaker, 7
- lightning arrester.

https://www.swissgrid.ch/en/home/operation/power-grid/technologies.html
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What is their main functionality?

Transformer

Disconnecting switch

Circuit breaker

Lightning arrester

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Motivation

Consider two parallel plates with insulating
air gap d and electric potential difference
∆ϕ = Usrc .
What happens if:

1. d = 2mm, Usrc = 230V

2. d = 2mm, Usrc = 1kV

3. d = 2mm, Usrc = 10 kV

You should argue with electric field.

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Electric Arc

Continuous, high-density electric current between two separated conductors in a gas or
vapour with a relatively low potential difference, or voltage, across the conductors.

▶ Circuit breakers

▶ Electric arc furnaces

▶ Metal-arc welding

Figure: Gas Metal Arc Welding.

Encyclopedia Britannica, https://www.britannica.com/science/electric-arc, Image:

https://www.rsi.edu/blog/skilled-trades/what-is-gas-metal-arc-welding/
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https://www.britannica.com/science/electric-arc
https://www.rsi.edu/blog/skilled-trades/what-is-gas-metal-arc-welding/


16/70

Figure: Electric arc formed by a transferred arc plasma torch and typical picture. [1]

Task: Estimate current density, electric field, and power density in arc column.
Operation conditions: 250A to 1000A, 30V to 100V, arc diameter 1mm, arc length
5mm.

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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▶ Video: High-voltage disconnect-switch arcing.
https://youtu.be/GMbN9nb3qyk?feature=shared

▶ Explanation:
https://capturedlightning.com/frames/longarc.html#500_kV_Switch

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Figure: Electrical conductivity. [2]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Definition (Plasma)

any ionized gas consisting of free electrons, ions and neutral particles (atoms and/or
molecules), electrically neutral on a macroscopic scale and electrically conductive.
Source: IEC Electropedia, ref. 841-31-01

Kinetic gas theory:

▶ Collisions of electrons and heavy particles, momentum exchange.

▶ Temperature = mean kinetic energy of gas particles that follow a Maxwellian
velocity distribution.

Basic assumption: local thermodynamic equilibrium (LTE).
In essence,

▶ all species share an identical temperature (Te = Th)

▶ collision rate is sufficiently

▶ spatial variations are sufficiently small

see, e.g., [3]
Thermal arc plasma: high current density (108 Am−2) at ambient pressure.
R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Cassie-Mayr model

Effective model for arc resistance in terms of Ohmic heating and Heat losses:

dRarc

dt
=

Rarc

τ

(
1− Rarc I

2

P

)
τ timescale, P heat losses from arc.
Mayr: P = P0, Cassie: P = P0R

−1

▶ A. M. Cassie, “Arc rupture and circuit severity”, Conseil International des Grands Reseaux
Electriques a haute tension (CIGRE), Paris, France, Report No. 102 (1939).

▶ O. Mayr, “Beiträge zur Theorie des statischen und dynamischen Lichtbogens”, Archiv fur
Elektrotechnik 37 (12), 588 (1943).

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Task: Consider a cylindrical arc with radius r and length L at temperature T .

▶ Find the arc resistance R in terms of r and L.

▶ Find the surface power loss from a cylinder with radius r and length L at
temperature T , and show that P = P0R

−1/2.

▶ Then assume that power loss is proportional to cylinder volume, and show that
P = P0R

−1.

Reference: see, e.g., [4]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Example: failed

R = 1mΩ, L = 20 µH, Usrc = 230V, 50Hz, I0 = 1kA, Rarc,0 = 1mΩ.
P0 = 2.2× 104W, α = 0.9, τ = 10 µs.

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Example: success

R = 1mΩ, L = 20 µH, Usrc = 230V, 50Hz, I0 = 1kA, Rarc,0 = 1mΩ.
P0 = 2.3× 104W, α = 0.9, τ = 10 µs.

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Learning objectives:
You should be able to:

▶ state the extended Navier-Stokes equations, Maxwell’s equations, and Radiative
Transfer Equation

▶ identify key parameters in the fundamental equations

Reference: [1]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Magneto-Hydro-Dynamics (MHD)

Figure: Interaction of processes in arc column. [5, Fig. 1]

see also: [6]
R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Navier-Stokes Equations

∂t(ρ) +∇ · (ρu) = Γ

∂t(ρu) +∇ · (ρuu) = −∇p +∇ · τ+J × B

∂t(ρetot) +∇ · (ρhtotu) = ∇ · (τ · u) +∇ · (λ∇T ) + σE 2 −∇ · qrad

p pressure
T temperature

ρ mass density
Γ species source

σ electrical conductivity

λ thermal conductivity
qrad radiative heat flux

τ viscous stress tensor
htot total enthalpy
etot specific total energy

u velocity

E electric field
B magnetic flux density
J = σE electric current density (Ohm’s
law)

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Maxwell’s equations

∂tB +∇× E = 0 ∇ · B = 0 B = µH

∂tD −∇× H = −J ∇ · D = qel D = ε0E

Potential formulation: B = ∇× A and E = −∇ϕ− ∂tA.
⇝ Magnetic Gauss’ law ✓, Faraday’s law ✓

Ampère’s law in low-frequency approximation (J ≫ ∂tD)
Current conservation

∇×
(
1

µ
∇× A

)
= −σ∇ϕ

−∇ · (σ∇ϕ) = 0

FE-based solver required if permeability (µ) is discontinuous
(e.g., steel)R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Radiative heat transfer

Total net radiative heat flux

∇ · q =

∫
∇ · qν dν

based on radiative transfer equation (RTE) including emission and absorption

s · ∇Iν(x , s) = κν(Bν − Iν)

(w/o transient term, scattering, refraction)
Bν blackbody radiance, Planck function (W sr−1m−2Hz−1)
Iν spectral radiative intensity (W sr−1m−2Hz−1)

▶ spectral absorption coefficient κν (m−1)

▶ Optical depth (L ≫ 1: opaque, L ≪ 1: transparent)

L =

∫
κνs ds

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Spectral absorption coefficient

Figure: Absorption spectrum for a mixture of 50% silver, 25% air and 25% hydrogen at 16,300
K and 1 atm. [7]. Visible light in 0.4 - 0.8 ×1015 Hz

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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External Circuit, Multiphysics

Multiphysics:

▶ MHD: Navier-Stokes, Maxwell,
Radiative heat transfer

▶ Rigid body motion (grid deformation,
remeshing)

▶ Chemical reactions

▶ Electrode erosion, wall ablation

▶ Non-LTE
R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Wall-stabilized arc

1D model: arc as an axisymmetric cylinder,
radial profile T (r)

∇ · (−λ∇T ) = σE 2 −∇ · qrad

Figure: Wall-stabilized arc. [8]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Learning objectives:
You should be able to:

▶ describe the working principle of a gas-blast high voltage circuit breaker in AC and
DC grids.

▶ explain why SF6 has been banned in EU and name alternative gases or
technologies to them.

References: [9], [10]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Figure: High voltage circuit breaker.

https://www.pfiffner-group.com/products-solutions/details/

circuit-breaker-with-natural-origin-gas-insulation
R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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History

Figure: HVCB Interruption Capacities. [11]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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HVAC Circuit Breakers

Figure: Components of a HVCB. [12]

Design characteristics:

▶ high voltage, i.e., 35 to 100 kV

▶ a few kA of load current

▶ Short circuit currents, 10 to 100
kA

▶ 30 years lifetime

▶ temperature ranges: -50 to 60 °C

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Gas-blast Circuit Breaker

Figure: Axial gas-blast circuit breaker. [9, Fig. 5.13.]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Gas-blast circuit breaker

Video: explanation of self-compression principle.
Starts at 0:39.
https://www.siemens-energy.com/global/en/home/products-services/

product-offerings/circuit-breakers.html

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Normal current interrupt process

Figure: Current interruption process. [13, Fig. 3.8]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Thermal failure

Figure: Success and failure during the thermal interrupting process. [13, Fig. 3.10]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Dielectric failure

Figure: Success and failure during the dielectric interrupting process. [13, Fig. 3.11]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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From SF6 to GWP-neutral gases

▶ Air was used in 1940s - 1990s.
▶ SF6 has superior dielectric properties (1920s), used anywhere in HV

▶ 1st SF6 CB by Westinghouse: 230 kV, 25 kA (1959)
▶ dielectric strength, heat transfer, e-negative, low dissociation temperature, high

dissociative energy, almost total recombination, non-reactive
▶ most potent Greenhouse gas: GWP 24000, 3200 year lifetime

▶ Alternative gases: N2, CO2, H2

▶ Additives: C4-Fluorinitriles, C5-Fluoroketones

▶ Alternative technologies (vacuum CB, . . . )

Referenes: [14], [15], [16], [17]
See also: EU F-gas regulation (next slide)

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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EU F-gas legislation

F-gas Regulation (EU) 2024/573, Article 13: Control of use.
Par. 7:

From 1 January 2035, the use of SF6 for the maintenance or servicing of
electrical switchgear equipment shall be prohibited unless it is reclaimed or
recycled, except if (. . . )
This paragraph shall not apply to military equipment.

Par. 9: Prohibited to put into operation switchgear using (. . . ) fluorinated greenhouse
gases:

▶ 2026: MV switchgear ≤ 24 kV

▶ 2028: HV switchgear ≤ 145 kV and ≤ 50 kA short circuit current, with GWP ≥ 1.

▶ 2030: MV swtichgear ≤ 52 kV

▶ 2032: HV switchgear ≥ 145 kV or ≥ 50 kA short circuit current, with GWP ≥ 1.

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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HVDC Circuit breakers

Task: derive a circuit equation. Which condition must be satisfied to decrease a fault
current to zero?

Figure: DC circuit diagram. Source: [18]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Challenges in DC fault current interruption:

1. There is no natural current zero in DC systems, and they must absorb magnetic
energy (12LI

2).

2. Fault current in HVDC systems rises rapidly to a peak value limited only by the
resistance in the current path. That is, DC breakers must clear 10x faster than AC
breakers.

3. HVDC circuit breakers need to quickly generate and sustain counter voltage
exceeding the system voltage.

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Mechanical Passive DC CB design

HVDC breaker create a CZ using a resonant circuit.

main branch low-resistance AC interrupter

current injection path LC resonant circuit

energy absorption branch single/multiple surge arrestors

Figure: Mechanical switch - passive resonance. [19]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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HVDC CB Designs

▶ The discussed design has considerable limitations in the maximum interruptible
current.

▶ Applicable up to 550 kV and 4 kA.

▶ More complex designs allow for higher power ratings.

Reference: [20]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Motivation: Low voltage circuit breakers

▶ Why do we install LVCB? What is
their purpose?

▶ How do LVCB work?

Figure: Miniature Circuit Breaker. [21]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025



51/70

Learning objectives:
You should be able to:

▶ identify key components in a low voltage circuit breaker and state their
functionality.

▶ describe the arc quenching process in LVCB in own words.

▶ explain why splitter plates are used in LVCB.

▶ explain how a pyro-fuse is used in EV DC system.

References: [9, Sec. 5.2], [22]
Low voltage: < 1 kV AC.

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Low voltage circuit breaker

Figure: Low voltage circuit breaker diagram. [23]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Figure: Air circuit breaker diagram. [24]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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▶ Contact opening, arc formation

▶ Arc moves away from contacts by Lorentz force, pressure gradient

▶ Arc splitting

▶ Arc cooling, prevent restriking

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Figure: Current and Voltage in LVCB. [22]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Arc root voltage

Figure: Principle of arc splitting by metal plates. [5]

Note: each pair of arc roots incurs 20 V additionally.
Task: Consider a 5mm thick and 10mm long electric arc in air. Estimate arc
resistance. How much current is required to reach 230 V? What does it mean w.r.t.
product safety of a circuit breaker? What if the arc is split into 10 sections?
R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Arc root voltage model

Figure: Voltage-current characteristics for modeling the formation of an arc spot. [5, Fig. 8]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Further modeling

▶ Arc root voltage drop: add surface heat term to Plasma

▶ Electrode erosion: evaporation model (add Cu (g) to Plasma, heat sink)

▶ Wall ablation: evaporation model (add cold gas, heat sink)

▶ Rigid body motion: include Lorentz force in electrodes

▶ Chemical reactions

▶ Radiative heat transfer

▶ etc.

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Circuit breakers in Electric Vehicles

Figure: Electric vehicle.

Source:

https://www.autoliv.com/safety-solutions/electrical-safety-solutions/pyro-safety-switches

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Circuit breakers in Electric Vehicles

▶ Volt-Breaker by DAISI (Pyro-Fuse)
https://youtu.be/78YvpWDAhuA?feature=shared

▶ Astotec (Austria): CB 500-2
Pyrotechnic circuit breaker for high-voltage applications in electric vehicle.
500V DC, 12.5 kA, 12.5 µH
https:

//www.astotec.com/wp-content/uploads/2022/09/CB500-2_web.pdf

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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Figure: Response of a pyro switch and current sensor. [25]
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Figure: Typical current and voltage curves. [26]

R. Fuchs: Physics and Numerical Modeling of Electric Arcs in Circuit Breakers, REM-Seminar 2025
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